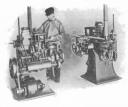
The Monotype Casting Machine.

The Lanston Monotype Corporation, Limited.

THE LANSTON MONOTYPE CASTING MACHINE.

THE LANSTON MONOTYPE CASTING

MACHINE.


Instructions Regarding Its Proper Use and Maintenance.

PREPARED FOR THE GUIDANCE OF OPERATORS AND LEARNERS.

MONOTYPE COMPOSITION.

THE LANSTON MONOTYPE CORPORATION, LIMITED 43 AND 43A, FETTER LANE, LONDON, E.G.

1905

ONE OPERATOR ATTENDING TWO MONOTYPE CASTING MACHINES.

TO THE MONOTYPE OPERATOR.

Whilst this publication is not meant to be a complete instructor in the art of running the Monotype casting machine, it will be found that, if all the instructions given therein are closely followed, there will be little left which could be learnt by other means than practical experience.

The best training is that which is the result of actual daily contact with the machine, but there are many points in its working which, if properly gone into by the operator, will add greatly to his efficiency and to the durability of the machine and its accessories.

The book will be found useful for reference, enabling the operator to refresh his memory and to avoid leaving undone things which would tend to add to the production of the machine and to enhance his own reputation as an intelligent and pairstaking operator. It will also bring to his notice many things which should be stremonsly avoided.

It is not intended to tempt the operator to be contimuly tinkering with the adjustments of the machine. The machine is entrusted to him in good condition, and careful attention to cleanlines and lubrication, the maintenance of the heat of his metal and the flow of water up to the correct standards, and keen supervision in order that screws or nuts do not work loose, will constitute practically the whole of his duties.

The operator, if he would be successful, will use his common sense, and judge between that which he can effect for himself and that which his want of experience instifies him in referring to the Monotype Inspector.

He should draw the line between childishly calling on others to put him right in regard to the most trivial details and the obstinate attempt to do for himself work (whether repairs or adjustments) of which he knows perfectly well he is not capable.

The man who takes a pride in his machine is almost sure to do better than he who simply goes through the day's work with absolutely no healthy interest in his occupation.

Special articles will be found on the Care of the Modd and Matrics. To much stress cannot be placed on the necessity to carry out most religiously the directions there given. The operator should bear in mind that a hair of the human head may measure something like eigh theomether of an inch, whereas the Modd and Matrices are designed to give types to a standard of an inch—or a fitticth part of the previous measurement. If he will think of these figures, he will see that if he but rubs a matrix cardessly he will affect its truth, whils to drop it on the four or expose it to hard usage consequent on faulty adjustment) can but damage at irretrievalw,

A good and careful operator will avoid more trouble than ten men can cure after the event.

The operator should consider it a disgrace to have to admit that some part of the machine has seized for want of oil, and no self-respecting operator will have a dirty machine.

In conclusion, the operator is urged to profib by experience. When troubles arise he should not be content to correct them, perhaps intuitively, but should closely study the cause, in order that it should be removed and a recorrect of the difficulty rendered unlikely. If he makes an alteration in the adjustment of his machine, he should know and be able to explain just why he did it, and if such is not the case, he should endeavour to improve his knowledge by referring to someone having a vider experience of the machine than himself.

CONTENTS.

					PA	GE
INTRODUCTION						5
PRINCIPAL FRATURES-						
The Mould						7
The Matrix Case						7
The Pump				-		8
The Wedges						8
DRIVING	-					10
BELT SHIFTER OR DRIVING GEAR .						10
Cams						12
CAN LEVERS						1.4
TYPE CARRIER						15
				-		18
Type Clamp Abutment or Trip						18
Type Supporting Spring .						18
Traverse of Carrier				-		18
				-		19
Forward Buffer Abutment Piec						10
						10
Setting the Pump						27
	2					20
Care of Thermometer .	2	2.1				31
TRANSFER WEDGES			-			31
The Spring Box						38
To obtain correct 4-unit space						39
Removing Transfer Wedge Roo						30
Inserting Transfer Wedge Rods	s .					39
DIE-CENTRING LEVER				-		40
Normal Wedge Locking Pin						40
TONG MECHANISM		0.1				42
LOCKING RACKS						49
MOULD BLADE MOVING GEAR						51
TYPE PUSHER						54
PAPER TOWER						55
Paper Take-up Spool .						59
BRIDGE	-					61
Descent of Matrices .						62
Ascent of Matrices						65
Timing the Centring Pin .	1					66
Aligning						66
Removing Bridge				-		67

	3	PAGE
GALLEY MECHANISM STARTING ACTION AND JUSTIFICA	TION	
WEDGES		67
List of Justification Wedges		72
Inserting Rock Lever		74
Removing Pump-Trip Collar		74
Removing Galley-Trip Rod		75
LINE SHIFTING AND GALLEY MECHANISM		75
Timing Galley Action Driving Pawl		
Traverse of Line to Galley Mouth		82
Column Pusher		82
Column Pusher Adjusting Screw		82
Galley Gate		83
Burr Trimmer		83
Replacing Line Hook Mechanism		83
Type Channel Springs		83
CHANGING FOUNTS		83
CENTRING, SIZING AND ALIGNING		84
JUSTIFICATION		86
THE PRODUCTION OF GOOD TYPE		87
CARE OF MATRICES		89
SYSTEM OF LOCATING DERANGEMENTS		91
		92
THE MOULD :		
Placing Mould on Casting Machine		93
Taking the Mould apart for cleaning		96
Assembling the Mould		97
TABLE OF JUSTIFICATION FIGURES FOR STANDARD SPACES		. 99
TABLE OF TYPE SIZES		100
PERFORATION TABLE		101
COMPRESSOR		102
Air Tank		102
LIST OF ILLUSTRATIONS		105

INTRODUCTION.

The machine having been installed, everything must naturally be left to the mercy of the attendant. On his intelligence, his care, and his industry, the output of the machine depends. The different parts of the machine perform the same evolutions day after day alike, and if the result produced to-morrow be not the same as that of to-day, either the attendant has allowed some part to become deranged or damaged by indifferent adjustment -such as a centring pin not seating in the matrix properly-or outside conditions have altered-such as the use of dirty or inferior metal. A careless attendantone who has no consideration for the firm employing him, nor care or interest in the machine entrusted to him-is generally slovenly in making his adjustments. and never attempts to see if any screws have become loose, with the result that the machine can become a worry to him instead of being full of interest. Unfortunately the machine is not " fool-proof."

This handbook is issued with the idea of giving the attendant an opportunity of studying every motion on the machine, tracing such motions from their very starting points, i.e., the driving cause, and to be a guide to him as to how such parts should be adjusted. Although it gives the method of detaching various parts, it does not follow that all those parts should be habitually or even occasionally disconnected.

The method adopted in this book of following each motion from its source should be adopted by attendants in the event of any undesired result occurring. Each can drives a separate mechanism, quite disconnected from the neighbouring cams, and upon any part not working exactly as its should, the variant provides the constraint of the start of the second start of the second working exactly as its should, the varianty from the cam opening such part. Later on, a few hints will be given a gaught to the method of proceedure in this direction. Ordinarily an attendant's duties are confined to the changing of the founts and to seeing that the quality of type produced is satisfactory. In doing this it is necessary that be take pains to see that all the adjustments in connection with changing a fount are scrupulously exact to the standard laid down in this book, that his metal is kept clean, and of proper quality and at the proper temperature, that his pump connections are working correctly, and metal channels are clean, and that is dry public. After this, all he has to do is to keep his machine cleaned and oiled, and to see that no servers or mults work house.

A point which cannot be too strongly impressed upon attendants is the importance of keeping their tools in good condition. It is pitiable at times to see the overstrained spanners and softened and useless screwdrivers kept by some operators. On no account should a screwdriver blade be dipped into molten metal, or its handle knocked by a hammer. The end should be correctly shaped so as not to slip out of the screw-head slot as soon as pressure is put upon the screwdriver, and each screw should be removed with the correct size of screwdriver. Do not tighten up or remove the nozzle with a galley spanner. Files are very useful when required for fitting a new part, but their use should never be needed by a good attendant. In addition to the tools supplied with the machine, a hand brace and strong vice are needed, and the latter should be placed in a light position.

Although all the adjustments have been given in detail elsewhere, we give in the following chapter the main features in connection with *running* the machine, as distinct from the adjustments of those parts which seldom require attention.

THE LANSTON MONOTYPE CASTING MACHINE,

0000000000000

PRINCIPAL FEATURES.

The four main features of the machine are the matrix case containing the matrices, the mould, and the pump, and these are in contact with each other at the most important point of the operation of the machine, namely, that at which the type is being cast.

All the other parts of the machine are simply attributes to these three, their office being, before the type is cast, to bring the particular matrix, corresponding to the letter required to be cast, directly over the recess in the mould, and set the mould so that the type is of the required size, and after the type has been cast to remove it from the mould to the type channel.

The mould, in main, consists of a foundation plate, side blocks, mould blade, jet ejector blade, and cross block. The mould blade and side blocks rest on a plate fixed to the foundation plate, the mould blade being free to be moved between the other two; and the cross block moves at right angles to the mould blade, forming a metal-tight/joint against the faces of the body blocks.

The ejector is contained in the cross block, and ejects that part of the type cast between the bottom of the fixed blocks and the foundation plate; it is operated by a cam fastened to the foundation plate.

The Mould in height, i.e., the thickness of those parts presented to the matrices, corresponds to the height of type from the foot to shoulder, and the width of the mould blade to the depth of the type, the width being determined by the distance between the blade and the face of the cross block at the time the twpe is cast.

The Matrix Case contains the matrices—225 in number —which represent all the different characters that can be east without change : the matrices are oblong cubes of gun metal, each containing at the lower end the female of a particular character, and at the upper end a conical The Pump performs the same work as an ordinary type machine pump, consisting as it does of a plunger and well, the well terminating in a nozzle which fits into a bell on the under side of the foundation plate of the mould, and through which the metal is forced into the mould to cast the type.

The Wedges are five in runnber, viz, the normal wedge, lower transfer wedge, upport transfer wedge, and the two justifications wedges. The lower transfer wedge in a passage cut in the B pin block. One vertical face of the normal wedge sildes against the abstrment block (the abstrment block has a vertical strip on its face (the abstrment block has a vertical strip on its face the wedge is being moved into position it is logic than the wedge is being moved into position it is logic than the wedge is abten model black.

The lower transfer wedge lies between the normal wedge and a fixed edge of a shelf, the shelf being slightly above the upper face of the transfer wedge.

The justification wedges rest on this shelf against the fixed sides of the pin block, and the upper transfer wedge lies between the outer justification wedge and the normal wedge.

The abuttment block has an adjustable screw against the head of which the mould blade strikes, and by which means the set size of the type is approximately adjusted.

The stop against which eithe' transfer wedge comes to rest on the "in" position is tapered, and by means of a screw adjustment above the bed of the machine this stop can be raised or lowered, thus regulating to a very fine degree the travel of the transfer wedges, and providing a means of adjusting the set sizes to any degree of accuracy.

The top transfer wedge has also an adjustable screw which comes in contact with the stop, and by means of which the relation between the transfer wedges may be regulated (that is to say, that the normal wedge remaining in the same position throughout, and the samply amount to a continuation of the "edge" of the shell—or, as it is called, the position of no justificationthem the difference between the size of the type cast when either wedge is in position can be made to equal any given amount).

The vertical face of the normal wedge is wide enough to engage either transfer wedge.

When a letter is being cast, the lower transfer wedge is in against the stop and the upper one out of action, so we have fixed edge of shelf, lower transfer wedge against edge of shelf, normal wedge against transfer wedge, abutment block against normal wedge, and mould blade against abutment block.

When a space is being east, the upper transfer wedge is magnist the stop, and the lower one out of action, so we have fixed side of pin block, inside justification wedge inner, upper transfer wedge against the outper transfer wedge, abutture block against the normal wedge, and mould blade against the abutment block. If wystery of the wedges is removed, and of the mystery of the wedges is removed.

In actual operation the justification wedges are brought into a certain position at the commencement of a line, and whenever a space is to be easi in that line, specific the size of the second secon

B 2

ADJUSTMENT OF MACHINE.

DRIVING.

The machine is driven by a puller keyed to the form can shaft, and the speed should be varied, by means of separate concel pulleys or other speed varying gear, form 13 to 16 for evolutions per minute, the former speed from 13 to 16 for evolutions per minute, the former speed and the latter for small type. The high remains by the side required, can to a "boys", the shifter eye should encircle out lead the shifter eyes, and the shifter should be the shifter eyes should be taken that the heit fixes the pulley, and can easily the shifter eyes and that even the shifter is likely to be broken. The belt should be 14' ondo, will run investigation.

BELT SHIFTER OR STARTING GEAR.

The belt-shifter eye is adjusted on an extension arm by means of a set screw, and the extension arm is in turn fixed to a ring casting by means of a clamping piece and screw bolt. This arm can be adjusted to any position around the ring casting, to suit the angle of the driving belt. The ring casting carries a stud, which serves as a guide, and also, when the belt is on the loose pulley, to prevent the machine being reversed, by the end of the guide stud coming into contact with a projection on the side of the type-pusher cam. A rod, screwing into, and clamped to, the ring casting, and running along the back of the machine, carries an arm, projecting upwards, to meet a short distance rod communicating with the starting handle. The former rod has a coil spring around it, which has a constant tendency to pull the belt-shifter eye over the loose pulley. The short intermediate distance rod, between the projecting arm and starting handle, is bored down a part of its length to receive a small plunger, with a spring behind, to act as a buffer, as the rod has a shoulder to prevent it travelling too far when starting the machine by hand. The end of this distance rod is

slotted to receive the end of the starting lever, which is in one piece with the starting handle. The starting handle is attached to the galley mechanism bracket by

FIG I.

Belt-shifter mechanism with the operating lever [139] thrown back, forcing the belt on to the driving palley and, at the same time, compressing the belt shifter spring (leval). The operating lever is held in this polition by the latch (139). As soon as this is refacised the spring forces the belt on to the loose pulley and the machine slows.

clamping screw which fixes ring casting to spring rod, or the screw at bottom of projecting arm, becoming loose.

a bolt and nut, and one end of the lever has a step which, in working position, engages a projection on the long or short line automatic stopping gear. (This latter will be dealt with in the description of the galley mechanism.) Fig. X is a plan view of starting ever.

Adjustment.-When starting lever (32F, Fig. I) is out of action, take projecting arm (2E) on spring rod (6E) to left till the intermediate distance rod spring box (37F) has 1-16" play between end of projecting arm and end of starting lever. Then put starting lever in gear, and set beltshifter eve (4E) so that belt runs in centre of fast pulley. By setting thus the fibre washer between the ring casting and cam-lever casting takes the force of the coil spring (6E2) when stopping the machine.

The only possibility of derangement with this mechanism is likely to be due to the projecting arm end (2z) getting out of alignment with the intermediate distance rod (372) owing to the ring casting to spring

(12)

CAMS.

The machine possesses two sets of main driving cams, which actuate levers to impart the desired effect upon the various mechanical principles employed. The cams are eight in number per set, and each set is keyed to a shaft carrying on its end a toothed wheel, and the whole are supported by a bracket screwed to the machine base. The action of the cams is positive, because where one cam is convex the counter is concave, and vice versa. The two sets are geared together by means of an intermediate toothed wheel, and for the purpose of easily finding the correct meshing the toothed wheel on the end of back cam shaft has a tooth marked "o while the counter wheel carries a tooth marked "T" The intermediate gear wheel is correspondingly marked "o" and "I" At a certain part of the machine's revolution the figures "o-o" and "I-I" will meet at the same time. The gear wheel attached to the front cam shaft is marked around its circumference with the degrees of a circle, twenty by twenty, fractions of twenty being ascertainable by means of the vernier plate attached to the gear cover. Nearly all the machine adjustments are correctly timed from this degree scale.

The cam-shaft bearings should be periodically inbricated through the small oil cups in the cam bracket just above the bearings, as oil cannot reach them from any other point. In practice the cams require little or no attention beyond being kept clean, but the machine may at times become stopped through a nut or screw or other article being dropped among the levers. In such a case it may be necessary to detach the cams, but this is an operation that should only be undertaken by a person well acquainted with the machine. With care, however, it may be tackled by any intelligent attendant. Usually it is only necessary to lower the set of cams nearest the cause of obstruction, and is done by removing the cam-shaft bearing brackets underneath the ends of the cam shafts. As the machine may have become wedged in such a position that it may be necessary to turn it forward to find the correct gearing when replacing the cams, care must be taken that the lever runners are kept on the face of that set of cams which have not been removed. This may be done by pressing the levers to the cams by hand, turning the machine inch by inch by the hand driving wheel, which is attached to the intermediate gear wheel, till the figures "o" and "I" on the intermediate gear wheel are in a level-line at the bottom. Having got the figures " 0-0" and " I—I" to agree, it only remains to screw up the bearer brackets tightly, as the gearing is then bound to be correct.

In performing the above, care should be bestowed upon the type-pusher lever and the type-carrier lever, to see that the runners follow the underhahed cans, but any anxiety concerning these may be avoided if the typepusher rod be removed. Should any difficulty be expendenced in getting the test ho correctly mesh, it may be possible of the type more "shake" to the intermediate sear wheel. Give more "shake" to the

The bearing screws should be occasionally tested to see that they have not become loose.

Sometimes the machine becomes fixed in one position through the carrier becoming wedged. To decide this point it is only necessary to remove the pin connecting the type carrier to the type-carrier lever, and then try the machine by hand, keeping watch upon the type upskler, and removing it if possible. If the machine has become free it will be necessary only to remove the type carrier. This will be explained later.

In the event of the machine becoming wedged, no nucle force should be excreted by hand to get it round, the gratest pressure permissible being just about as much as is excreted when overcoming the action of the pump, and in no case should any sudden jerk be attempted. On no account should the cam be interfreted the provide the state of the state of the state by some outside object, and all efforts have failed to eack out such obstruction.

On present machines the locking bars are backed by means of a separate single cam, placed on the front cam shaft between the dis-centring can and tong-worker cam, and the lever roller is kept to the face of this cam by the action of the spring on the rod in connection with the lever. See that this roller revolves as the cam goes round; if not, a flat may wear on it and upset the locking bar releasing adjustment.

For case of reference the cams are lettered A, B, C, D, E, F, G, H, starting from hand wheel. The typecarrier cams are A, pump-action cams B, transfer-wedge cans C, bridge cams D, tong cams E, paper-tower cams F, mould-blade cams G, type-pusher cams H, and the single cam on front shaft for backing blocking bar I.

The cams on the front cam shaft (driving) have the letters A, B, C, &c., cast on them inside a circle, while the rear cams (driven) have the letters A, B, C, &c., cast inside a square indentation and so are easily identified.

(14)

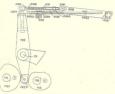
CAM LEVERS.

The first three can levers, A, B, and C, are fulcrunded on a shaft carried in the can bracket casting on the right-hand side; the fourth and fifth, D and E, are fulerumed in an extension bracket screwed to the meachine base; the sixth, seventh, and eighth, F, G, and H, on a shaft on leth-hand side of cam-bracket casting; and the "1" cam lever rocks on a pin in a boss left on the cover of the back set of cams.

The levers carry friction rollers on the cam ends, and require no attention beyond being kept clean, and lubricated on the runner pivots; ior this, holes are provided on each side of the fords which carry the runners. No attempt should be made to detach the runners from the levers, owing to their special form of construction, but it should be seen that they are always revolving free?.

The levers should scarcely ever require removing. but sometimes the type-carrier lever becomes broken through neglecting, after having removed the carrier, to replace the spring abutment steel piece, attached to the type-carrier top spring rod, into the slotted projection provided for it. (This will be referred to in describing the type carrier.) This breakage would not occur if the precaution were taken of gently turning the machine by hand after having replaced a type carrier. In the event of breakage, to remove the type-carrier lever, first take off the cover over cam gear wheels, then the hand wheel bearer cap ; remove hand wheel, take off right hand bearer cap of lever fulcrum shaft, and then drive shaft from left to right. The bottom end of lever E should be forward, to expose the end of shaft while driving, and for this purpose first turn machine, say, to 120 degrees. In replacing, while putting on hand wheel, see that the figure " o " on worm comes between the figures " o " on the bronze worm wheel of galley-action vertical shaft. It is also necessary to get the figures "o" and "I" on the cam gear wheels to correspond with "o" and "I" on the intermediate gear wheel as explained in the description of the cams. To get the teeth to mesh easily it may be necessary to partly lower one set of cams (back for preference) by loosening the cam shaft bearer screws. B and C cams are also removed by

To remove either of the F, G, H cam levers, take off split pin and washer on right-hand end of corresponding shaft, also the screw on top of bearer between F and G cam, then draw shaft to left.


(15)

To remove the tong spring-box can lever (E), move the fulcrum pin to the *right*, past the transfer wedge rod link motion, and withdraw. Do not attempt to turn the machine with the fulcrum pin in this position, but, having removed the lever, replace the fulcrum pin.

To remove the cam lever (I) operating the lockingbar bell cranks, remove the cam lever E, unhook the lever I from the rod 33E, and then disconnect the fulcrum bolt (3584, Fig. 33).

TYPE CARRIER.

The type carrier (Fig. 2) is worked by the A cam lever, and its object is to carry the type from the mould to the type channel, prior to being taken to the galley.

FIG. 2.

Canns, cann lever and connections for moving type carrier. Note that the spring (2239) ablocks the movement of the cam lever to the right in case a type jams and prevents the carrier from moving.

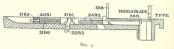
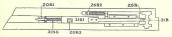

It is adjusted to the cam lever by a connecting rod with a right and leith hand thread, and the other end connects by a link to the mould cross block. At one end (near the mould cross block) it is tunnelled out to allow the type to pass through it, and the type is gripped, which being carried, block it is tunnelled from provide the site of the site of the site of the tunnel of the site of the site of the site of the supporting spins (site). A casting position the tunnel is presented to the type channel, and the type pasher ejects the type previous? each, the supporting spring now being pulled back (to allow free passage to the pushed post short received proved and postinto contact with the angle guide piece on the unit pin block. Con completion of the casting operation, pin block is completion of the casting operation, and the cau caused the type carrier to give a skight kick back to cut the jet piece of the bottom of the type, the cau lever forces the type carrier forward till the tamal is presented to the type in front of the modul having been type away for the angle guide guide guide guide having to an away from the canged guide guide guide guide guide the tamal is presented to the type of the module having to an away from the canged guide guide guide guide guide the start of the start of the start of the start of the tamal start of the start of t

FIG. 3.

Rear view of type carrier with type champ above removed, showing carrier at ight and of its stroke with the type champ (z60) withdrawn to the left, so that the mould balance can place the type in the carrier. Note that, at this end of the stroke of the carrier, the support spring (310) is in position to prevent the type from failing forward.


unit pin block, and being now in a position to prevent the type turning as it is rapidly ciccid into the tunnel. In going forward the skifting champ (250) is held back by a projection meeting a turp plate (38), Eise, a) attached to the turit pin block. Having received the type the the projection on the constant set of the back stroke the unit pin block. Towards the end of the back stroke the type stroke the projection or the constant generating plate meets the the projection or the constant set of the back stroke

Horizontal section through the currier at right and of its stroke just as the mould Mode is moving forward and pushing the type into the carrier. As the currier moves to the right the lug on the type chanp (right strikes the trip (right), canning the chanp to open to receive the type, which is prevented from failing forward by the support spring (right). angle guide piece on the pin block, taking the supporting spring away to form a clear passage for the type pusher through the tunnel to the type channel.

The carrier connecting rod carries a coil spring to act as a buffer on the forward stokes, and a projecting rod underneath carries a buffer spring for the end of the back stoke. At the extreme end of the bottom of the carrier, where it connects to the mould, is a flat brass plate acting as a shield to protect the type from any possible particles of metal which might otherwise accidentally reach it during the ejecting period.

Should the machine be casting bad or hollow type through inattention either to the temperature of the metal or the quantity allowed to pass under the piston, the type-carrier tunnel is liable to become chocked with broken pieces of metal, rendering the type supporting spring open to breakage. Otherwise the type carrier should require no attention beyond cleaning, excepting, perhaps, the occasional renewal of a buffer spring.

FIG. S.

Rear view of type carrier with type-clamp shoe removed, showing carrier at left end of its stroke with the type support spring (323) withdrawn, so that the type pusher can pass through the carrier and show the type cut of the carrier into the type channel, where it is supcorted by the latches.

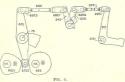
To remove type carrier, take off mould cross block, disconnect fork end of adjusting rod from cam lever, remove the two angle guide pieces holding the carrier to pin block, and carefully lift out.

In replacing, be careful to get the projection (a8b) on siling clamp to the left of the tripplate found on end of pin block mear mould, and in screwing up angle guide picer makes are they arently eaving the carrier. The picer makes are they arently eaving the carrier. The or comping up the connecting rod to the cam lever, try the carrier by hand to see that it sildes freely. In screwing up the longer angle piece, the short screw should go at the end near the connecting rod. Great should go at the end near the connecting rod. Great should posses, the opped which the connecting rod passes, is dropped in the skot provided for it, otherwise the full traverse of the type carrier will be prevented, and the cam lever broken. To guard against this, a habit should be cultivated of gently turning the machine by hand after having had the carrier apart—in fact, always after having disceted any part of the machine.

In connecting the carrier to the carrier lever adveys insert the connecting boils of but the head points to the left, and the hole for the split pin is on the tight. The object of this is, should be carrier become wedged in a forward position, the bolt may easily be removed, which would not be the case if the head of bolt was on the right, as in that event the die-centring lever bracket would be in the way.

Adjustments : SLIDING CLAMP (26B).—See that this slides freely, and that the end face is not above the face of the carrier, and thereby putting friction on mould wall face. Also see that the projection is not bent, and that the cover plate screws are not loose.

If this slide does not work freely type-turning will be the result, probably resulting in choking the carrier tunnel or type channel, and possibly breaking or bending the type-channel spring.


Type clamp aburyings or YRIP FLATE (28B)—See that this is not loose. A hole is provided in end of pin block behind mould for fixing this. Pass a screwdriver through, and test it occasionally. If the abutment plate be taken off, be sure when replacing that the grooved side is the same side as screw head.

Type servorarise summe (120).—The end passes along a groove in the skilling damp, and the side should along a prove in the skilling damp, and the side should supporting spring must not touch the inside tunnel wall will be indiffective. The spring must not be too strong, will be indiffective. The spring must not be too strong down to the terming. A note should be taken of the tension as it leaves the works. It should be seen that too hurs exist on the should operating level or attach along the strong terming the strong terming level or attach the tension strong terming the strong terming level or attach along the strong terming the strong terming level or attach along terming the strong terming level or attach along terming terming terming terming level or attach along terming terming terming terming level or attach along terming termi

Taxvirssi' or CAREDRA—Turn' machine to casting position. In this position the end wall of carrier tunnel should be in exact line with the face of fixed type-channel side of the type carrier, and one on top of the shout angle guide picce. These two lines should correspond at casting period, which is also the time the pusher operates. On the forward position, the time during which the type is wall of carrier should be 1, 1-64 from end face of unit pin block. By this setting, the largest type (12 point) may be ejected without fouling the type carrier, and all smaller type will follow suit. It will be noticed that the line marked on the type carrier will have travelled forward 2 5-32", which should be the stroke allotted to the cam lever. It is best, therefore, to first ascertain if the lever is giving this stroke, by measuring the difference in the position of the line on the type carrier during casting and mould-blade ejecting period. If the stroke is not correct, raise or lower the extension post (72E4, Fig. 2) on top of cam lever, till the right length of stroke is obtained, and lock up tight. Having got the correct length of stroke, it only remains to set the tunnel wall of carrier in a line with wall of fixed type-channel block, as previously explained, and the setting will be correct, without troubling to measure from end of pin block to tunnel wall during the forward position. This latter setting is obtained by lengthening or shortening the connecting rod (21B) of carrier. The main point is first to get the correct stroke from cam lever before setting the carrier.

ANGLE GUIDE PIECES.—See that these and their seatings are clean before screwing down. The screws must always be down tightly, but the type carrier must slide freely.

FORWARD BUFFER ABUTMENT FIECE (21B10, Fig. 2). —Do not jorget to place this in its slot before starting machine, or the cam lever will be broken.

PUMP ACTION.

Pump came (66n), cam lever (6yn), connecting rod (68n), operating lever (34n), rocker arm (33n), connecting rod (3an) and bell crank (21n) for moving piston lever operating rod crosshead. Note that, for the sake of cleanness, the pump latch for connecting the operating lever and rocker arm is omitted from this view. The pump action initial motion is imparted to the lever (δ_{75} , F_{12} , δ_{1}) by the B driving cam. A rod (δ_{158} , connects the cam lever to another lever ($_{548}$) in machine base, which is fixed by a clamping screw to a shaft running the whole width of machine base. Loose upon

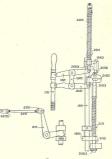


FIG. 7.

View of pump operalling mechanisms editer the pump-body spring rod stop rats (purs) have since their abundanced, schedular gavy further upward rotsched the pump-body crossband (pum). The further risk of the pinton crossband (page) forces the picton down into the pump body, exciting the metal from the could also the mould which, by this time, has been fitted into contact with the could

mould. In the lower left corner of this cut is shown a side view of the bell crank (2210) which opendes the piston-lever operating rod through its crosshead (14011).

the same shaft is the pump rocker arm, having two lever projections, one near lever 34H, and the other towards the other side of machine base, marked 33H. This latter lever is connected by a rod to a bell-crank (27) lever (2111) in the pump-bracket casting. One end of this crank lever is forfsed to engage a lifting crosshead (1917, Fig. 7) attached to a vertical rod (1911) in pump bracket, the reciprocation of which rod works the

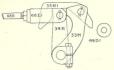
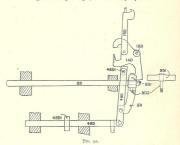


FIG. 8

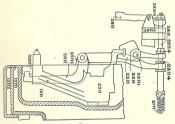

Pump latch (3381) enguging the operating lever (348), making this lever and the rocker arm (3381) practically one plece. Pump-trip tabe collar (4401) is above forward in position to be struck by the latch, as it moves to the right, and to disconnect it from the operating lever (1481).

pumping mechanism on the pot. This rod (1933) must only reciprocate when casting is required, and for that reason the pump rocker arm is loose on its shaft. The operating lever (343) has a square end, and the loose

FIG. 9.

Pump latch ($\gamma_{2}\eta_{11}$) lifted out of contact with the operating lever ($\gamma_{4}\eta_{1}$) by the pump-trip collar ($\gamma_{4}\eta_{2}\sigma_{1}$) being interposed behind it. When the latch is in this position the operating lever oscillates without producing any movement of the rocker arm ($\gamma_{2}\eta_{1}$), consequently three is no motion of the pump. sleve lever near it carries a loose latch or hook for the purpose of locking the two together (see 32m, Figs. 8, 9). When engaged, as in Fig. 8, motion is given to the rod (rgn) in purp bracket (Fig. 7); but when disengaged, as in Fig. 9, the lever (54μ) will reciprocate without carrying with it the arm on 33μ , and the pump (32μ), such as at the end of a line while the justification veckes are being arranged, or when the pump is dis-

Side view of pump-trip collar (450.1). The rise of the justification-wedge lever (14.0) moves the collar behind the pump latch and locks the pump[out while the wedge is being set.


NIN

connected by hand, a sliding rod, carrying a collar, is provided, and so arranged that when the rod is in its normal position the collar clears the side of the latch (33th), but when the rod is drawn to the right (hocking from back of machine) the collar is placed in the track of the latch, and disengages if from the operating lever (34th). A spring automatically returns the sliding rod, carrying the collar, as soon as metal is required. (The

(22)

control of this collar will be dealt with when the galley action mechanism is explained.)

The metal pot (Fig. 10) pot (Fig. 10) the second pot (Fig. 10) the pot may be (Fig. 10) the pot may be the pot is the pot may be the pot is the pot may be the pot is the pot may be made in the second potential of the pot potential potential of the potential potenti

FIG. 10.

Section through the melting-pot casing and melting pot, showing the pump hody (1234), the platement litting lever (1344) and the nonzhe-mal litting lever (1566), the operating root (1586) which moves these levers and the operating root allow and lever (1566). The upper and of this lever is released before the injection of melter and that the litting species can raise the pump body and as the moves the intermediate state of the litting species of the root of the mould.

Fig. 17. By the action of the pumping mechanism the pump body rises, so that the nozzle may meet the mould bell and form a metal-tight joint whilst casting is taking place, and then recedes so as not to overheat the mould or chill the nozzle.

The action of the pump mechanism is as follows : As the bell-crank lever (2111) in the pump-bracket casting rises, taking with it the vertical rod (1018, Fig. 7), the crosshead (1011) at the same time compresses a spring encircling another vertical rod (3IMI), causing the latter to rise, by the spring pashing against a sleeve shoulder at the top end. A separate crosshead (roys and 3IM2) is attached to the extreme tops of these two rods. A pair of linked levers (18M and 24M) is connected to these two crossheads, the latter lever terminating into

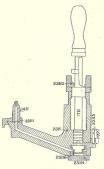


FIG. 11.

Section through pump body, showing the piston at the top of its stroke, against its stop (zysz).

a guide on the pump body, and the former into a guide on the piston (shown plainly in Fig. 12). At a given distance in the rise of the rods (191 and 3111), the latter is checked in its motion by the 111 (31113) coming into contact with the bottom of bracket. By this time the pump body will have rise, allowing the nozzle to fit into the mould bell. Although the progress of rod (zur) has been arrested, the rod (zr0) continues its upward motion, with the result that the piston lever (ZR3) is rocked by the spring (Zo0) pulling one end upwards, causing the piston to make an attempt to descend. But as the piston lever (ZR3) is connected on its fulcrum by a link (j23) to the pump-body lever (zq3), the upward motion of the spring rod (zon), lifting the end of piston

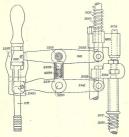
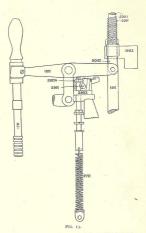



FIG. 12.

Section showing pump-lever connecting link planner (3283) provided to facilitate the adjustment of the crosshoad slop (1285). When the piston crosshead (1991) comes in contact with its stop (5286) the upward movement of the pitton must have the checked by stitking its show (1286). Thaving the federum of the piston kever rest upon a spring a much less accurate adjustment of the slop is resulted.

lever (331), has a tendency also to lift pump-body lever (240). At the other end, the piston, in descending, is thus opposed by the pump body trying to rise; in short, the two are working against each other. Were it not for this action existing, the mozle on pump body would be forced away from the mould bell in the event of a tight piston becoming stuck in the pump body, as the

C 2

Piston being illing to the top of its struke by the descent of the left end of the piston kever (skin, complet to very (source), piet starts the up stocke of the piston is should be posting of the structure of the piston of th

(26)

nozzle-lifting spring (27H, Fig. 10) would not be strong enough to withstand the downward friction of piston. To continue, as soon as the mould has received the full quantity of metal to form the letter body, and the rod (191) not having finished its stroke, the surplus motion is absorbed by the compression of the soring (201).

The pump body rises in a perfectly cirtical direction through being balanced at each end upon separate levers (size and zon, Fig. 30), thus elsewise height perfect and the second second second second second second a turbure lever (con, Fig. 5), each second second second lever (163), effect 3.1, and the latter rises, the lever (zon) is relaxed, and the separing (zyn) tacks the pump body up is relaxed, and the separing (zyn) tacks the pump body to cross lever (1630) descends, it depresses that here is the conselver (1630) descends, it depresses to lower.

Adjustments.—A' buffer is provided on the rocker lever (334, Fig. 0), and when the latch is engaged on the lever (344, Fig. 0), and when the latch is engaged and at the end of the forward stroke of cam lever. This is obtained by adjusting the connecting rod (658) till the correct compression is arrived at.

The connecting rod $(22\pi, Fig. 6)$ between the rock lever (33π) and crank lever $(2\pi\pi)$ should be so adjusted that the distance between the eye-bolt centres is rolf^{*}. When connected, see that the crank lever $(2\pi\pi)$ clears pump-bracket casting at the extreme ends of its stroke.

SETTING THE PUMP,-Screw up not ready for casting (that is, with the lever latch engaged as in Fig. 8) and set the machine at 220°, by the indicator on cam-shaft gear cover. Slacken off nuts at bottom of pump-body spring rod (31HI, Fig. 14). Now adjust the crosshead stop stud (31H8) so that the fulcrum pin (32H1, Fig. 12) is central with the hole in piston lever, the hole being 1-32" larger than the pin. The piston top, in coming up, will now be checked by coming in contact with the pump-body stop (23H2, Fig. 11). In this position, the pin (32HI) should be free, if tried by the fingers. Having screwed up lock nut on stud (31H8), bring up nuts on bottom of rod (3IHI) till the top one just touches pumpbracket casting, and lock up. Fig. 12 shows plunger (32H3) on fulcrum pin, which assists to keep piston to top of well, making port at bottom of well arm (Fig. 11) come opposite bottom groove of piston.

With the machine still at '220', set the nozzleoperating lever (291, Fig. 10) r_{-10} ' from piston lever (134). This setting varies slightly, as for hard metal the nozzle should be brought away earlier by reducing this distance. The valve (23H6, Fig. II) should be clean on its seating face, and have a needle hole in its centre. The valve is to check the return of metal from the well-arm channel, but if too much metal remains in the nozzle

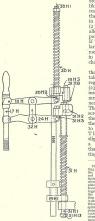
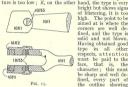


FIG. 14.

stop - casting is likely to be the result; hence the small hole in hat valve (23H6), which allows a small portion toretim. If the hole is too large, insufficient metal will remain in the well - arm channel.

To regulate the inlet port, take back the regulating screw (23H5, Fig. 11) to insure plenty of metal getting beneath piston. Then gradually screw down till the bottom of the quads begin to get hollow. Then back slightly. This is a better plan than first shutting off all metal

View of pump opening michains dotars real must (strrty) stiller when the rear ends or hier abuttness; that is, when the rear ends or hier abuttness; that is, when the rear openting real crossband (part), which aching spring (part), fills the prophy with the piston (part), which the piston (part), which the piston (part) with the piston (part) of the part of the prophy of the part and gradually opening till the quad bottoms are solid, as the type carrier is likely to become choked with imperfect types when the port is insufficiently opened. The metal required to pass the port varies according to the fount cast.


Should the nozzle splash under the mould bell it can be tested by the squaring post provided. To test, first bring nozzle up to mould, and then measure the distance the fitting lever (dip) has risen from the bracket easting, just above the spring (zyn). Now take of mould and squaring post in mozih hole. Regulate end of lifting lever (adq) till it measures the same as when nozzle was on. This can be done by packing it up with a few quads or pieces of type, the object being to have the squaring post in squares do to the same height as occurs when squaring post in squares with the machine base occupied by the mould. In not, readule to the name heads have a square squaring post in squares with the backing base of the squares squaring post in squares with the backine base occupied.

Keep the nozle and metal channel in primp body clean. Be careful onto burt top of nozels. See that inlet holes in bottom groove of pision are clean, and that otherwise piston may be a set of the set of the set of otherwise piston may stick up and not counc high enough to present the inlet holes to the port. Keep all parts well noise, specially crosshead strong (y1818), bottom of spring rol (zoard), and plunger on lower (y20, Fig. 0) are difficult of access. To avoid undue wear, and to sets it agetting a free plunge from the piston, the beatings (four and 180m, Fig. 15) and how top gent burary difficult of access.

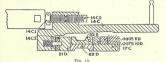
TEMPERATURE OF METAL AND MOULD.

These temperatures are variable, and no exact rule can be given that will answer in all cases; they alter with different sizes of type and with the speed of the first of the larger the type cast, or the present the rate at which the machine is running, the more metal will be passed through its in a given time, and a greater flow of water will be necessary to keep it at the proper temperature. The modif should be keep at a less consistent as to cause the modif hade to hang up or the cross block bluck. Due to the other hand, the types must be sufficiently cooled before passing from the mould into the type carrier that they do not burst or swell during the transit from the mould to the type channel. Keeping in mind that the temperature of the mould is to a very great extent dependent upon the temperature of the metal, we will turn to that question. There are two limits to the temperature of the metal in the pot-the lower limit at which the machine will not cast and the higher limit at which the machine is prone to splashing. and the type likely to blister and burst-and between these limits the correct temperature lies. The proper temperature is judged from the appearance and quality of the type produced : if the type has a frosted appear-

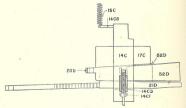
ance, and the corners are not well defined the tempera-

Detail of bearings on end of the he pump-body levers for permitting these ends o slide slightly on the piston and the pump

bright but shows signs of blistering, it is too high. The point to be aimed at is where the corners are well defined, and the type is solid and not blown. Having obtained good type in all other respects, attention must be paid to the face, that is, the character: this must be sharp and well defined, every part of the outline showing up clear and distinct. If defective, the fault most likely lies in one of the following


causes : the temperature of the metal or mould too low, the metal dirty, the nozzle not clear, or a sticky piston. Examine the latter point first, and then raise the temperature of the metal and regulate that of the mould accordingly. By strengthening the takeup spring (20H) the face of the type is often improved. but care should be taken in this connection that too much strain is not put on, which results in an undue load being put upon the machine at one particular point of its revolution, affecting its balance, and making it work in a jerky manner, besides causing excessive wear on the pump connections. It may be put down as an axiom that it should be worked with the least compression consistent with good results. In this, as in

all other cases, the main factor in obtaining good results is the temperature, and it depends above all things upon the intelligence and care of the operator, and, all other failure : particular attention should be paid to it, and when once the point has been arrived at which gives the set results, it should be noted and maintained through out in turn. As tanknown that the set results is also been as the point has been arrived at which gives the set results, it should be noted and maintained through out in turn. As tanknown the set of the maintained set of the set


Case or rimearcanerus.—The thermometri is a very defacte instrument, and should not be handled roughly. Never throw it down hastly or give it any sudden jerk, sepecially upon any solid body, or the mercury may become divided, readering correct reading impossible. Remove it when leaving the machine for any considerable time, as the metal may become overheated, diving the mercury to the excites top, which add thermometer bodily into the molten metal, but heat it gently by first dioxing only the point.

TRANSFER WEDGES.

The whole mystery of the justification of the lines of type, to make them any given length, is wrapped up in the transfer wedges. The various thicknesses of the *litters* depends upon the distance to which the mould

Section through the abuttorn slide (14c) where a character in being cast, through the position of the wedge when the inert of type cannet wedge (15c) encoded to the state of the the proper capture, a space were to be easily the inert of the state of the state of the internal wedge to make the body size of the character regard. If, however, a space were to be easily the interval of the state of the state of the interval wedges (15c) and the state of the state of the state of the interval of the state were to be easily the interval of the state o blade is pulled back, and this distance is governed by the position of the normal wedge. The various thicknesses of the spaces depends upon two justification diseases of the spin sector of the spin sector of the general posterior of the spin sector of the spin sector being employed, the normal wedge must always lie in position is when the normal wedge is in the fo-unit place. The transferres of these two conditions is by means of the transfer wedges, which are two in number, placed source we have the bound place. The bottom one is brought into operasonal wedge. The bottom one is brought into opera-

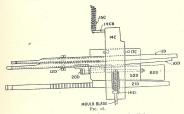
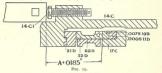


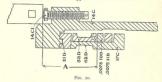
FIG. 17.

Mould blade, mould-blade abstiment skide (r_4c), normal wedge (ntb), with the type-transfer wedge (farb) in casting position ; that is, bearing against its aburment on the C gras block and its invortants to the left stopped by the micrometer wedge (arbo). The space transfer, or upper, wedge is shown to the right out of position.

tion each time a letter is required, and the top one rests diy forward. The mould Made is brought back to an abstance typics in front of the normal wedge, and this by the unit pin blown up. The normal wedge is in turn pressed against the bottom transfer wedge, and this wedge against and abstancent on the "position" pin block. Fig. 17, where it will be score on P and the transfer wedge and justification wedges are booked. When a spore is wanted the bottom transfer rod goes forward, and the top one receives, and the mould black now gets pulled back to the abstranct piece, this against the normal weiges, and these against the two justification weiges, and these against the abstranct on "position" pin block. The normal weiges when this take place, and or space required. The top transfer wedge is an adjusted that, with the justification wedges in that body will be that, with the justification wedges in that body will be exactly on 35° tes than the 6-out to body charged we have the start body and the start body will be the start weiges to the start body and the start body will be that, with the justification wedges in that body will be


(33)

Mouth black, mould-black abuttment dide (r,cc), normal wedge with the space transfer wedge (ran) in casiling position : that is, begring against the justice backwedge, with the black. The mouth show that is, begring a space of the state of the space of the state black. The mouth show the space wedge to the site is stopped by the micrometre wedge (sol), the same as with the type transfer wedge (sol), the same as with the type transfer wedge (sol) is the space of postion. The postion is the right case of postions.


the bottom transfer wedge is in operation, being exactly two units of 12-set type. As this overlap of .0.85' would make the 4-unit too small on other founts, the difference is obtained by varying the "constants" or " $_{-}$ durit" justification keyr on the keyload in another to the difference is obtained by the two probability of the operation, and by comparing this drawing with Fig. 20, it will be seen how the top transfer wedge reveals the mould blade receding so far as when the bottom one is in use by .or85".

The transfer wedge rods are worked by cam C. Connected to the cam lever, which is provided with an adjustable post for the purpose of varying the throw if

Section through mostle-blade abutancet slide and wedges when the mould blade is pulled back to east the smallest justifying space. Note: The normal wedge is slid in the also sent projects. Distance from each of blade that the space case with the normal wedge in the same position and with the justifying wedge is for 1-1 justification.

desired, is a very ingenious link motion, the object of which is to pull at the two transfer rods, and to withdraw the one which does not happen to be locked in a forward

Section through movid-blade abuttment slide and wedges when the mould blade is pulled back to cast a six-mit character with the type transfer wedge (62b) in. Let the distance from the end of the blade to the abuttment be A.

position. As the cam lever backs out, pressure is put upon the centre link (5904, Figs. 21 and 22), which in turn causes the bottom transfer rod (63p) to come back the long front line (spon), with a spring box at the bottom (ico), acting as a buttress. This action repeats itself all the while letters are wanted, but when spaces an equivalet, the bottim disters. As the case lever puts pressure upon the centre link (spon), the top end or ordiside link (spring) being fixed by the bottom transfer real model of the letter link (spon), which in turn pulse the top transfer rod back, the spring box (soo) still acting as a buttress at the opposite end. Figs. 27 and acting as a buttress at the expective transfer rods fully withraws.

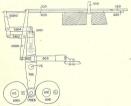
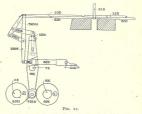



FIG. 21.

Position of the transfer tongs when the type-transfer wedge (62D) is in casting position. Since the space-transfer wedge (52D) is locked out by the billite (54D) engaging the notici in the upper, or space, transfer rod (53D), the spacewedge lever (59D) of the tongs remains stationary, and all movement of the cam lever is transferred funcing the tongwedge lever (59D's).

The counse of transference is as follows : The "space" repriorations in the paper consist of two holes—one for blowing up the 6-thron of the three vertical rols on the A pin block, whose headed need to be the set of the three vertical rols on the A pin block, whose headed here vertical rols on the A pin block, whose headed here vertical rols on the A pin block, whose headed here vertical rols on the A pin block, whose headed here vertical rols on the A pin block, whose headed here vertical rols of the three vertical rols of the

a spring. Through a hole in this lever a plunger shifter is passed (55%), having a slot through part or its length this slot, and each rod has a mick, the top rod having the roke of the slot of the start of the slot of the slot face, as seen in Figs. 21 and 22. Mormally, when letters are save in the slot of the slot of the slot remains locked forward by the plunger shifter (550) cation of the strong, thus leying the lotters of action of the strong, thus leying the lotters in the slot scattor of the strong, thus leying the lotters in the slot remains locked forward by the plunger shifter (550).

Position of immaker tangs when the space-transfer wedge (520) is in casting position. The shifter now engages the north in the lower, or type-transfer, red (650), looking the type wedge (state) out of position. The movement of the cam lever is, therefore, transferred through the tangs to the upper, or space-wedge operating, rod (530).

rod free to slide in and out. But when the die-centring lever lifts the justification rod (5704), such as it does when the space perforations are in action, the shifter plunger (550) is lifted, releasing the top transfer rod, and locking the bottom one as it reaches the end of its inward stroke.

The transfer wedges are attached loosely to the ends of the transfer rods, and the one operated upon by the link motion already described is drawn back against a vertical wedge, called the fine adjustment wedge. This fine adjustment wedge is receiled by a very fine screw. and as it is screwed down the transfer wedges are not allowed to receede so far, thus allowing the mould blade to be pulled further open than when the transfer wedges are permitted to receed further by the fine adjustment wedge being higher up. This wedge is only for very fine adjustments, and by it adjustments to the type can be is an illustration of the fine adjustment or micrometer wedge.

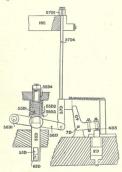
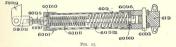


FIG. 23.

Shows the quark air pine stated which is space performing in presented to the respect to the state of the state of the state of the state of the state engaged and litted by the certainperior lever (right, nisting the shifter lever (size) and compressing in shifter sping (size). Which the lower, of type-instance, and and compressing in the shifter sping (size) which the state of the state pring at uses all to be shifter into this south, looking this roll and, at the same time, releasing the uspiter, or space-timeler, not [155]. The top transfer wedge, against which spaces are cast, carries an adjusting screw for the purpose of accurately getting the difference required between a 4-unit and e-unit body, this screw allowing the transfer wedge to get nearer to or further from the fine adjustment wedge to meet the necessities of the case. When once correctly set, this screw should never be interfered with.

Adjustments: THE SPRING BOX (60D, Figs. 21 and 22) is attached to machine base by a small bracket and two screws, reached from inside the base through the door. Adjust the nut and lock nut on the rod



Section through locking-pin stand (153), showing micrometer wedge (roo) and method of adjusting by rotating the adjusting screw (2002).

To adjust lift of lever-arm rod (5704, Fig. 23), insert head into nick on centring-pin lever, and turn machine till centring-pin lever has risen to top. Then measure top of shifter (550) from top of casting through which it passes. Turn machine further round till bottom transfer rod has reached end of inward stroke, when the

(60D5, Fig. 25) from spring box so that the rod is not slack in the box, which happens if the nuts are too far in or too far back. Couple up link levers to transfer-wedge rods. taking care to insert rawhide washer between end of rod and front of link connecting eve. Then set the adjustable extension post (50DI. Fig. 21) on top of cam lever till 1-16° compression on spring in spring box is obtained when cam lever is at end of outward throw. There should also be 1-64 compression when cam lever is at end of forward stroke. Make sure all three nuts on spring-box rod are thoroughly top of shifter (50) should rise about 4" higher than perious measurement. If such should not be the case, adjust by the nuts on top of lever-arm rol (5704) is inserted in discentring lever, the shifter (550) will jump upwards with a sharp (dick as the bottom transfer-wedge rol reaches end of inward traverse, and the upp opt) nonline lever-arm rol be set too low down, the retaining plate will strike the bottom nut cach time the centring lever rises, causing unnecessary wear.

To OPTAIN CORRECT FOUR-UNIT SPACE.—To set top transfer wedge so that correct 4-unit space is obtained, bring justification wedges to extreme forward position (by blowing through justification perforations marked 1-1 on keyboard), and then insert piece of paper with normal space perforations. The type body now produced should be exactly.or85⁶ less than when 6-unit

Saction through transfer-wedge spring box.

letter hodies are cast. The top transfer wedge is adjusted by means of the screw running lengthwise through it. When making this adjustment, care should be taken not to move the justification wedges from the t-x position. To avoid this, the characters for measurement should be removed from the type channel by means of relaxing the galender if thing rolds (55). Fig. 52) in the meth-on die-scretting lever.

REMOVE TRANSFER WEDGE RODS—To remove top transfer wedge rod only, insert the rod (570-4, Fig. 23) into discentring lever, and bring lever to the top of its stroke. Remove nuts at the end of rod, and withdraw from metal-pot side of machine, being careful not to let transfer wedge fall to the floor. To remove bottom rod it is not required to insert the rod (5704) into discenting lever.

INSERTING TRANSFER RODS .- After having had the transfer rods out, to get them back first insert the

D

bottom rod (through slot in a hifter, 520) and serve it up to the operating link. Then insert lever-arm rod (5704) into discentring lever and turn machine till C can lever has reached end of inward stroke, when the shifter (550) will have engaged in nick in bottom transfer rod. Now pass top transfer rod lincough slot in shifter (550), and connect up at back. Before connecting up each rod at these can be hand in coupling these up, as the long rod goes at the hottom, the adjustable weige at the top, and the smooth sides of weiges existic toperter.

Occasionally examine the nuts at the end of the transfer rods to see that they are not loose, or bad instification may ensue.

DIE-CENTRING LEVER.

The die-centring lever is worked from the D cam. Its uses are : to engage the three vertical (justification) rods when blown forward, and lift them ; to depress the normal wedge locking pin ; to take the die case to and from the mould, and to work the die-centring pin.

With the exception of the normal wedge locking pin, the adjustment of these parts will be dealt with in their respective places, when dealing with the mechanism with which they are connected.

Adjustments: NomMAL WEDGE LOCKNNO PIN—TO adjust the normal wedge locking pin, first see that it slides freqdy in its bearings, but has not the slightest the slightest pin strength of the slightest light by the body body but by the slightest being locked every time in exactly the same position. Adjust this locking pin by means of the four-sided nut (raps, fig. $z\bar{z}$) on top of locking pin standard. This nut works a couple of tightening covers. If the locking pin the top with a piece of wood or lead. Never leave the aut off its senting.

To get the överect lift on the locking pin, turn machine till discenting layers in at its highest position. Partly insert a normal wedge so that plain portion (not tech portion) comes under locking pin. Slack back the nuts on top of locking pin till locking pin rests on normal wedge. Turn units down till they just meet the top of abutment piece (1quito, Fig. 26). Now give the back back back pin the locking pin trift of normal wedge. Lock up natts and remove (or properly insert) normal wedge. Lock up natts and remove (or properly insert) the top portion screwing into the bottom. It must be seen that these are tightly screwed together, as they may be worked apart if an attempt is made to unscrew the top adjusting nut (14p1) without first unscrewing its lock nut. In unscrewing this lock nut always have a spanner on the adjusting nut (14p1). This remark applies to all nuts with lock nuts.

In locking up the nuts on top of normal wedge locking pin, it is a good plan to first remove the guide pin (1496) to avoid the danger of breaking it off.

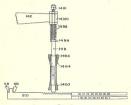
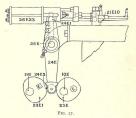


FIG. 26.

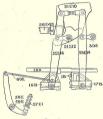
The normal wedge, after being positioned by the matrix jaws, is locked occurately in place by its locking pin. Note: In the above cut the normal wedge is matted to show the position the mould blade occupies in casting the different unit bodies.

Never turn the machine with the nuts on the normal wedge locking pin slacked back, because if the bottom of pin does not clear the teeth of normal wedge the latter are liable to be broken as the matrix jaws endeavour to take the normal wedge to the position of the locking rack.


Fig. 26 shows the action of locking pin on normal wedge, after the latter has been positioned by the matrix jaws, and also the various positions on the normal wedge that mould blade occupies in casting different bodies.

D 2

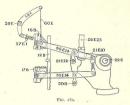
(42)

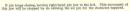

TONG MECHANISM.

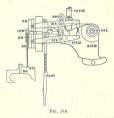
The tong mechanism is worked from the E can (see Fig. 27). On each side of the machine are two sets of tongs, having javas at one end. The tongs cause the java to travel along the pin block to which they are connected. The pin block near the galley mechanism is called the B, called the C, or 'position,'' pin block. The can lever, the the C, or 'position,'' pin block. The can lever, meet togethor, the position on evident pin block at which they meet togethor, the position on evident pin block at which they meet being decided by the pin blown up. Should more than one pin be blown up, through faulty paper

Cams, cam lever and spring box for moving jaw-tongs bell crank.

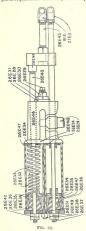
or two keys on keyboard having been struck at once, the first pin-the one nearest mould on either blockwill be the position where the jaws will stop, as it is only the forward jaws which meets the pin, the hind jaw riding over the pins. These pin jaws, in meeting together, draw a rak along (tur. Fig. 28) by means of a gether, draw a rak along (tur. Fig. 28) by means of a be brought to the position of the pin pixetion will thus as the rack is in position, it is locked by a long the end of which engages the teeth on the rack (see Fig. 21). The can lever will now have completed its inward stroke, and, on returning, the pin tongs open out, and the lower (or matrix) set of tongs come tocytener, stopping in the positions at which the rack projections have been placed by the pin tongs. In coming together, these lower tongs drag, two the sages addrag, or slide running in the distance of the same states of the same states of the distance of the same states of the same states of the distance of the same states of the same states of the B block drag the die case so that some particular unit row is presented to the modul, and the matrix jaws on C block drag the die case so that some particular dist office for satisfies the letter presented to the modul office for satisfies the letter presented to the modul




FIG. 28.


B pin jaws positioning stop rack, motion of right jaw stopped by air pin, left jaw moving rack to right as tongs close.

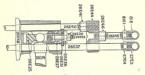
Each set of javs takes fifteen positions, to correspond with the number of matrices in each row of the die case. The matrices have their centres one-fifth of an inchagent, and the centre of one pint to the centre of the next, if taken in a straight line, is consequently one-fifth the case into position, the case into position, the matrix laws the pintonght the disc case into position, release the racks. Another pin will now have hown up, and the cycle of movements be repeated.


(44)

B matrix tongs after moving sliding frame, by means of its draw red, to the position determined by the stop rack, which previously has been set by the gin jung. The air is conducted by pipes inside the base of the machine from the paper tower to the pins. No movable pin is required for the zero (or end of pin block) positions,

Spring box for jaw-bong bell cranks.

so there are fourteen movable pins to each block. The nin blocks must he an air-tight fit upon their seat-ings. Should they not be, through being screwed down to dirty seatings or otherwise, air is likely to escape from one pin to another. thus blowing up more than one pin and producing wrong letters, should the extra pin blown up be in front of the one desired. When not in use, the pins are held down by springs, and a top plate acts as a cover and guide. Each pin should blow up freely, and drop quickly when the air is released There should be no suggestion of sluggishness in either direction. The pin blocks are fastened down to the machine base by screws, guided by dowel pins, but the necessity of removing them seldom arises, and they should not be unnecessarily removed


Adjustments.—This book is dealing with the adjustments of the later machines, which vary from the older ones mostly in connection with the torg mechanism. In older machines all four sets of tongs were driven from one bell crank, but two bell cranks—one placed over the other, and fulcrumed upon the same stud are now employed, the upper working the B tongs and the lower the Congs.

The top of the cam lever carries an adjusting post to vary the throw, the post having a ball head.

The spring box (Fig. 29) consists of a framework (26E48) carrying two tubes (26E47), one placed over the other. These tubes contain the springs. The ball extension adjusting post (26E24, Fig. 30) on cam lever is set into a sliding socket (26E25), and adjusted by a plug (26E20) having a dished end to correspond with the ball (26E24). When the ball is once adjusted by this screw, the screw should not afterwards be shifted during other adjustments. Two rods (26E40 and 26E37). running through the tubes (26E47), connect the spring box to the tong operating cranks-one to the top crank and the other to the lower. The lower rod runs straight through to tong bell crank, but the top rod, being above the line of connection with tong crank, is connected first to crosshead (26E44) and thence by a shorter rod (26E45) to the tong crank. The distance between the tong bell crank connection and ball head on cam lever can be regulated by a short sleeve (26E27) screwing into the spring-box frame. This sleeve is provided with a turning piece (26E28) loosely keyed into it, and provided with holes for a pin spanner. The stem of the ball-adjusting plug (26E20) passes through a clearance hole in sleeve (26E27) and sleeve turning piece (26E28). and a nut (26E30) outside the latter draws the ball socket (26E25) to the rear end of sleeve (26E27). As the position of the latter varies, so will the distance between the ball head (on 26E24) and the connection on tong crank vary.

To remove spring box take off all tongs and also nut and washer on top of tong bell crank stud. Stacken the champ nuts on the cam lever, and turn machine so that paper-feed rol is at its highest throw. Then lift spring box and tong cranks out bodily. To replace, have machine in same position, start ball-head shank (2624) first, and then work down slowly and simultaneously on ball-head shank and tong bell-rank stud.

Before putting spring box on machine, adjust the two ball sockets on tong bell cranks (81E and 27E3), and ball socket in spring-box frame, the latter by the square end of 26E20; then lock up the nut (26E30). Next set the units (zfeigg and zfeig8) belind spring box lightly against the collins and lock them lightly together. Set the bull stud (zfeigg) so that the square portion is done by stackening the rul (zfeigg) and ling up to (zfeigg), having taken care not to move screev (zfeigg). After placing spring box, see that square portion of all stud (zfeigg) is so set that there of running through it is parallel with the hole, and that the holton of the square box the zero constrained by the spring box.

FIG. 30.

Section through spring-box cap (size) and crossibilit [15021]. Solows appendent of box to independently portion stroke of upper and lower bell cambo, The lower spring rod (risira) not being adjustable, the box itself is anweed to regulate the lower camb studies operations for eran tongs. The trobke of the upper ranke, which operates the front tongs, is positioned by screwing the upper spring rod ((stort)) out ed, or into, the crossibal (dwint), to alter its length.

The adjustment for the lower cank is made by maying the ball model (steel). In radius to the ball-back ball plug (risks), which is recover in it, it but right, or left, in radius to the ball plug (risks), which is moved in it, it but right, or left, made at a set of the ball plug (risks) which is recover in the steel of the made at a set of the ball plug (risks) which is recover at the pilde pin (steel). After the socket is positioned from 10000 grad, will be ball to the made at a set of the ball of the ball is placed in the time regulated by altering the bally of the ball program and the ball to the time regulated by altering the bally of the ball program of the ball order that the ball of th

under ball stud (zórzą). Now coensect up all tongs mail javas. Set the lower C tongs first, getting that stud (zórzą). Now see that the lower (nor matrix) C tongs just meet at rog degrees of machine's revolution and start opening at rog degrees in and in adjust that and moving the sleeve turning piece (zórzą). Ult ba above timing is arrived at. By unscreening with addazi to large the sleeve turning with advazi to large large the sleeve turning with advazi to large large the sleeve turning with advazi to large the large the sleeve turning becceled to the sleever turning is arrived at. By unscreening with advazi to large the large that the advacion to movel, the intro (zórzą) must be tightened up, otherwise the effect of turning the adjustment will not be seen; but, as before mentioned, the plug (26E29) must not be moved, otherwise the setting of the ball stud (26E24) will be altered.

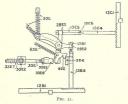
In setting the lower C tongs, take care that the upper tongs are not opening out too wide, preventing lower tongs denotes the start of the setting of the setting them together slightly by adjusting their connecting link (552:15). Also take notice that the B tongs do not open too wide during the time the Congs are being set. Next adjust the top (pin) C tongs by the adjustable coupling at the end of the forward stroke of asymp box.

After adjusting the C tongs, regulate the lower B tongs by serving up or unserving the rod (2654.0) in the crossbead (2654.4); then adjust the top B tongs by their adjustable coupling. The two sets of matrix jaws should close simultaneously at ro5 degrees, and commence opening at 105 degrees. The two sets of pin mence opening at 105 degrees. The two sets of pin they should not open so which that they are tight between the ends of the jaw moe.

In placing tongs on the machine do not forget to place the paper take-up spring holding piece on the rear stud of lower B tongs. The end of this spring holding piece should bear against paper tower.

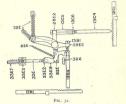
In setting the spring 'box, the tong-tension spring (57), Fig. 38) should be coupled by no, and the short abutment slever should be on the guide rolds for pin jaws. If there is at least 's space between first pin and the striking edge of pin jaw. Also the front matrix jaw on b block should eque out so that here is at least τ -to' space between the striking edge of jaw and the head of month equation position.

Note that all the lubrication holes on spring box are in an upward position, and that the spring roles (dox_{17} and dox_{140}) are moving freely, which can be ascertained by placing the ingers on the nuts (dox_{15} and dox_{140}) at end of roles at the time the matrix jaws meet. If no movement is felt against the nuts most likely the through want of lubrication, and should be attended to immediately.


Should the jaws not properly close through the wooden brake hanging up, or through the adjusting nuts being allowed to work loose, wrong letters may be the result, or the centring pin may not enter the cone

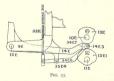
(49)

of matrices, but strike on the matrix plate, causing the letters to overhang or break off, and possibly result in metal splashing between mould and die case.


LOCKING RACKS.

It has been mentioned that each pair of pin jaws carried a rack into the position of the pin blown up, and that the rack was then locked till the die case had been positioned. The bars (Taya and T3c4) which lock the racks are worked from bell cranks, actuated in their forward direction by springs (see Fias, 3r and 32), and

Plan of stop racks (12m and 12c) after being accumately positioned by the locking bars (12m and 12c). The locking bars cannot be jarred out of the racks, as the locking-bar bell cranks [25m and 23k] are prevented from rotating lefthanded by the latches (3m).


in their backward directions by a red (zyn) connected to the can liver operated by a cam placed on the front to the can liver operated by a cam placed on the front the can lever releases the focus of the pin large. As soon as the racks are positioned by the pin large, the hadro (redesses the focus) of the racks. For the hadro (redge the level) of the racks. For shaped, and the ergs of the bars are made to correspond, as the bars with ϕ shaped text (being held in only by the held-cann's spring) would be apt to jump out by the held-cann's spring) would be apt to jump out laches (532) are provided. These latches weige the

bell cranks in such a position that the locking bars cannot fail to perform their function effectively. As

Plan of stop racks (12B and 12C) after the locking bars (13B and 13C) have been withdrawn to allow the racks to be positioned for the part character. The movement of the connecting rod (13B) to the right finst whichfarns the latches (81B); the bell cranks (28B and 29B) are then rotated left-handed, withdrawing the bars.

the machine proceeds to revolve, the rod operated by the cam lever first releases the safety latches and then withdraws the bars from the racks.

Centring-pin cam lever at right end of its stroke. The locking-bar lever (3480) has moved the locking-bar connecting red (352 as far to the left as possible, permitting the locking-bar springs to sent the locking bars in the stop racks as shown in Fig.

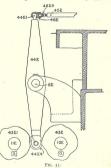
(50)

When placing this mechanism on machine, first insert the locking har in C pin block, and then fit bottom bell crank, complete with springs and latch. Next put locking bar in B pin block, and then top bell crank, having first inserted the bar extension piece (13B1), and top latch.

Adjustments.—Set the racks in position, and let the bars enter the teeth (the middle teeth of rack for preference, being less used than the end teeth). Then adjust the bars by the

FIG. 34.

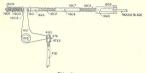
Position of locking har bell crank latches when forward against bevel on plate (306).


bolts (13BI and 13C5) so that the end of the projection on the latches meets the end of the beyel on the plate which enides the B pin block locking bar, as shown in Fig. 34. Should the end of latch go beyond the beyel of plate withdraw the bar from the rack. and adjust the bar by the end bolts and try again. Do not try to adjust the bar with the latches engaged on bevel, or the bell-crank lever may break off. Having adjusted both bars so that the two latches engage bevel equally, turn machine forward till the locking-bar cam lever is on its full forward throw. and adjust the rod (33E) from

cam lever to bell crank so that the bars withdraw from rack teeth by 1-16''. Having slackened the nuts on the rod, if the spring be pushed up the rod slightly, a pin hole will be found for turning purposes.

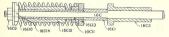
MOULD-BLADE MOVING GEAR.

The mould-black moving gear is actuated from the G cam (see Fig. 3), the lever from which connects to a cranked lever (415, Fig. 5) rocking moder the tongengages the rod (foc) to which the mould black is coupled, and which runs through the C pin block. The object of the rod is to operate the mould black, either in pulling it back to the distance allowed by the normal high the coupled of the rod (foc) to which the rod (foc) to the source of the term into the coupled of the term of the term of the term of the term into the carticle.


The mould blade is connected to the rod by a forked slide (1605), which moves along an extension on the C pin block, and is brought back to a screer in the abutment slide (μ_c , Fig. 16). This screw is for adjusting the mould black till the correct set of letter is obtained, and it also acts as an abutment for the mould blade each time it is brought back. The anvil in abutment block (μ_{eQ} , Fig. 16) in turn prevents any sharp knocking on the normal wedge. The rod carries two springs, which

Monid-blade cams, cam lever and connecting rod.

are used for ejecting. (These two springs (16c2), together with the sleeve (16c4), act as one spring.) Behind the lever is another spring (16c10), which brings the mould blade back in sizing up to normal wedge.


Adjustment.—Put smallest set normal wedge obtainable in machine, and bring the two justification wedges to the 5-unit position. Insert on paper tower a piece of paper perforated to raise 6-unit space pin, this bringing the top transfer wedge into operation. Turn machine to 130° and adjust the connecting rod (428) so that end of crank lever (418) clears the abutment washer (rfcr3) by nearly 1-64°.

Mould blade, mould blade operating rod (r6c), mould blade bell crank (4rm), and mould blade connecting rod (440). The forward movement of the mould blade is theorem by its striking the mould blade stop on the back of the mould blade blade is theorem by its striking (r6cc). The blade stop of the back of the rod of the rod blade stop of the striking regimes (r6cc). The blade stop of the blade is therefore the volgas : access motion of the crank compresses the skring sequence (r6cc).

By this adjustment the mould blade will be brought back before the matrix seats on the mould. Should the matrix get seated before the blade was quite back, the sliding action of the blade would damage the matrix. The other consideration is that the transfer wedges get

FIG. 37.

Detail of the sizing spring and its abutments, showing inside sleeve (r6crr) used to clamp the rear abutment (r6cr4) against the shoulder on the operating rod (r6c).

seated against the fine-adjustment wedge (20D) before the mould-blade adjustment takes place against them.

Fig. 37 is a section drawing showing how the sleeves and abutment washers are placed on the mould-blade operating rod.

(54)

TYPE PUSHER.

The type pusher is worked from the H cam, and is used for pushing the type through the type carrier tunnel into the type channel, prior to being taken to the galley. An adjustable rod connects the cam lever to the bell crank working the pusher. The only adjustment about the pusher is that it should push the type into the channel so that it yets just behind the spring

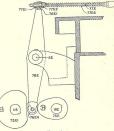
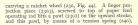
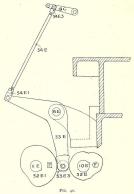


FIG. 38.

Type pusher came, cam lever and connecting rod. Note: If the type catches and prevents the pusher moving forward, the movement of the came is absorbed by the spring (2786).

latches in the channel walls. A guiding lever, attached to the normal-wedge locking post, keeps the pusher steady in its line of traverse. Fig. 36 is an illustration of the type-pusher lever and connecting rod, and Fig. 39 is a plan of type pusher and bell crank.

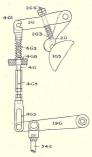

TO REMOVE TYPE FUSHER.—The most convenient period of the machine's revolution for taking out pusher or replacing it is at 36°, when the bell-crank lever will be fully back. Should the type carrier be at any time disconnected, and allowed to remain on the machine, the pusher should be removed, and on no account should the pusher be left disconnected when turning the machine.



Plan view of type pusher showing bell crank and right end of connecting rod.

PAPER TOWER.

This consists of a box containing pipes (thirty-one in number), which communicate between the paper perforations and the air pins in the three pin blocks. A line of thirty-one holes in a crossgirt at the top of paper tower leads to the pipes, and the paper passes over this line of holes, being fed by spur wheels engaging the side perforations in the paper ribbon. Hinged by a shaft on top of the tower is a clamping piece, with a narrow leather pad, called an air bar (see 26, Fig. 41), which covers the line of holes. A pipe by the side of the tower conducts air to the hollow end of the air-bar shaft, and then down one of the air-bar arms, to beneath a small valve (see Fig. 42). At a given time the air bar is clamped to the cylinder and the air valve is depressed. allowing the air first to rise and then descend and travel along a groove in the leather pad of air bar, and thence through any perforation in the paper. The feeding of the paper over the crossgirt, and the clamping of air bar whilst air is blown through, is done by the sixth (or F) cam lever, which has a connecting rod (54E, Fig. 43) to a lever (196) fulcrumed on the right-hand side of paper tower. This lever reciprocates two rods, one (1765, Fig. 43) in connection with a spring box operating an escapement motion for turning a ratchet wheel one tooth for each revolution of the machine, and the other (4G, Fig. 41) depressing the air bar and valve. As the paper is passed over the crossgirt it is wound on to a spool. The spool is attached at one end to a short shaft



Paper feed cams (52E), cam lever (53E), operating rod (54E), and paper tower lever (196).

revolves the ratchet on the downward stroke of connecting rod, thus keeping the paper taut.

Adjustments.—Adjust the cam-lever connecting rod so that the spring (1764, Fig. 43) has $\frac{1}{8}$ compression at the end of down stroke and $1-16^{\circ}$ on the upward stroke. This can be told by having the locking lever (126) up, and seeing how far the rod (1705) enters or leaves the spring box (1705) at the end of the strokes. Care must be taken that the stud running in the slot of connecting link (403, Fig. 41) does not reach the top of slot at the extreme upward stroke, or the lever may get broken. Next adjust the screws (1520, Fig. 41) so that

FIG. 41.

Paper-tower lever at the bottom end of its stroke, having clamped the air bur to the crossgirt.

the spurs on wheels for feeding paper come in line with the ince of holes in crossight to both on the down and up strokes. In adjusting this, see that the tooth on end of locking pawi (136) and feeding pawi (1365) both enter the ratchet (2004) centrally between the teeth without moving the ratchet wheel; and also that as the pawiring lug just touches the right-hand screw (rozo) the air

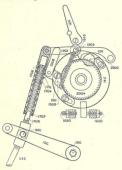
E 2

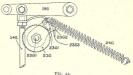
har on crossgirt has not clamped the paper. (These parts seen also on Fig. 45.) To set this, put a piece of spool paper between the lug on pawl ring (14G) and right hand screw (1620); turn machine gradually till the paper is lightly gripped. Then put two thicknesses of paper under air bar and adjust by the nuts on the stud (264, Fig. 41) at each end of air bar so that the two pieces of paper can be drawn through by pulling very lightly. Further compression will be given, as the machine continues, by the springs (2G3) on air bar compressing. The next adjustment is to see, whilst the paper is feeding, that the air bar rises 1-64". To test this, bring the stud in paper-tower lever (196) to the centre of slot in connecting link (4G3), and adjust the sleeve nut (4G8) on connecting rod (4G) and lock by nut below so that four

h air bar at valve. Shows the bar in the positic per and the valve opened to admit air to the cros-girt through the paper perforation.

thicknesses of spool paper can be lightly drawn between air-bar pad and crossgirt. Next adjust valve operating screw (3G3) so that valve gets depressed 1-16"

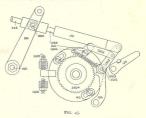
These adjustments should not be unnecessarily interfered with by caster attendants, as they are rather confusing to the inexperienced. But the following are the points to bear in mind : The stud in paper-tower lever (IGG) should not reach top of slot in air-bar connecting link (4G3) on the end of up stroke. The paper-feed spurs must come in line with holes in crossgirt at end of up stroke and down stroke of connecting rod (54E), and tooth on locking pawl (13G) and tooth on feeding pawl (13G5) must bottom the teeth on ratchet without moving the ratchet wheel. The lug on pawl ring (14G) must reach right-hand screw (1020) in lng on paper-tower casting before the paper is champed on crossignt. The air bar must lift from paper $1-\delta q'$, and the spring (1774) must have k' and 1-n0' compression on the up and down stroke respectively. If these conditions are fulfilled, the setting will be correct.




FIG. 43.

The paper-lower lever at the end of its down stroke. The feeding pavel ($x_1 \sigma_5$) has rotated the ratchet ($z_0 \sigma_4$) until the further movement of the pavel has been stopped by the larg on the pavel ring ($z_1 \sigma_5$) striking the right stop screw (rcz_0). After this course the further downward movement of the lever is absorbed by the noting box.

PAPER TAKE-UP SPOOL.—A section of this is shown in Fig. 46. It is pivoted on one end by the plunger (25G1), and on the other by the end of shaft (21G5). A pin (21G8) engages the driving disc (22G) when the


(60)

button (25G2) is bedded into its V seating, and the turning motion is imported by the ratchet (23G). When the button (2562) is withdrawn so that the V projection rests on the end of the paper-tower casting, the disc pin

or at the up end of its stroke having raised the win d (2)G01 into position to rotate the winding ratchet (2)G0 as soon as the lever ords and permits the operating spring (2)G o act.

and of its up stroke. pawd (1765) and pawl ring (146) When the movement of the pawl screw (1620), the further upward by the spring box (176).

(2168) withdraws from the driving disc (220), and the spool is free to revolve in either direction. A further withdrawal of the button (2502) leaves nothing for the spool to pivot upon, as the shaft will receive by the action of spring (21700), and the spool can be taken off. When the shaft (2705) is pushed to the right by the button (2502) entering its V seating, the disc pin (2163) should

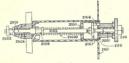


FIG. 46.

Section through winding spool showing plunger butten (zp0z) intrad so that the plunger spring (1904) forces the plunger (zp0z) into the spool. This form the left bosning for the spool and, at the smart time, forces thus chaft (zr03) into disc shaft (zr03), for the right bearing, and extens the pin (zr08) in the driving disc (zr03).

project the thickness of the driving disc (22G). This is regulated by screwing off the left end of spool, when the shaft (21G5) will come out. The disc (21G7) can then be adjusted as desired, first loosening the lock nut behind it.

Care should be taken that the flange (2IGI) is not bent, or the paper will wind unevenly.

BRIDGE.

The bridge spans the model, and contains the die case. In the middle portion is attached a plunger, with a tapered end, called the dis-centring pin, which as discovered on the discovery of the state of the state state. The state of the state of the state of the state two posts, running through the bridge casting, is a discoverying from, along which the slide containing discoverying from the slide of the state of the state at right angles to the slide itself (see Fig. 43). Being thus free to slide in either direction, any die in the case may be presented to the modul. The two beam, and make to move up and down by a connecting link attached to the discentring lever. The matrix jaws drag the disc as to the position decided by the blownup prins, and the disc-entring lever causes the disc case then to approach the mould. The centring pin their finder of the second second second second second Fig. 49). In each fourt the disc are all punched in a fixed relation to the cone hole, the centring pin, therefore, causing all the letters to have the same alignment. A draw rol leads from the side to the lower jaws on B pin block, and a hook on the disc assee angoes a shoe C block.

The stand through which the centring pin runs is screwed to the bridge casting, and may be adjusted in

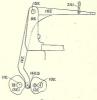
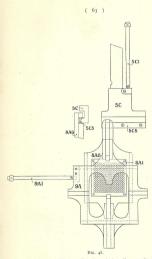
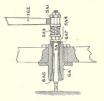


FIG. 47.


Centring-pin cam and cam lever when the matrix case is in casting position : that is, at the bottom of its stroke.

two directions at right angles to each other. The use of these adjustments will be explained below.

Adjustments.—Put bridge on machine, seeing that all three feet are clean, and no pieces of metal adhering to them. Also see that machine base, where bridge feet go, is perfectly clean.


See that the fulcrum rod (2A2, Fig. 50) measures 4 15-16" from top face of bridge casting to centre of fulcrum stud (2A5).

DESCENT OF MATRICES.-Do not insert link pin (3A), but with the machine in the position where the type

Plan view of aliding frame with matrix case in place. Shows means by which matrix case can move in two directions, at right angles, and the draw rods through which the matrix javes produce these two movements of the case. carrier has just reached the end of its back stroke (the end of die-centring lever having slightly dropped here), place a piece of spool paper between the die case and mould, and depress the bridge lever (2a) by hand. The paper should draw out without seizing.

In the event of imperfect setting, slack back the lock nuts (4410) and stop nuts (442), and put one thickness of spool paper between mould and die case, as above. Depress lever (2A), and bring down one stop nut (4A10) till the paper wild faw without tearing if lightly pulled. Then turn the lock nut back one complete turn, which will make the paper tight gain. Now bring down the

FIG. 49.

Centring pin in casting position, seating the matrix firmly on the mould. The seating occurs after the cone of the pin has entered the cone hole of the matrix and accurately positioned_lit to make the alignment correct.

other stop ant (4x) till the paper draws correctly. Having gott hesper right by the second stop and, bring both up. By this method it is guaranteed that the stop units will come down equally on the guide and bushes $(Lbb)_{in}$ and not on one only. It may be found that faste solutions are also been as the second stop of the stop solution of the second stop of the stop of the stop solution of the second stop of the stop of the stop solution of the second stop of the stop of the stop mutic (stad) comparison of the stop of the stop of the stop of the second stop of the stop of the stop of the stop stop of the second stop of the stop of the stop of the stop stop of the stop stop of the s By this adjustment, as the stop nuts strike the backs, the matrix will rest on the mould, and the wire running through it will be in centre of the matrix hole, as shown in the illustration (Fig. 50). Should the matrix carrying frame descend too far, the bottom of matrix hole will be forced against the matrix wire, but should the carrying frame not go low enough down the top of matrix hole will be forced on the wirthy cansing splashing through the matrix not being firmly scated on the mould surface.

(65)

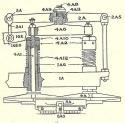


FIG. 50.

Carrying frame in casting position, showing matrix resting on mould. Note that the downward movement of the carrying frame is, at this point, checked by the stop muts striking the tops of the bashings.

Ascentr or MATRICES.—Next turn machine round lit the centring lever is at its higher position. Insert fibre plate, and then see that the hole in bridge lever (az) is slightly higher than the hole in connecting link (za1). If not, back the adjusting mat (4a4) on top 'u hole) and it dlive plate isloud be free to move. Should the hole in the bridge lever be lower than the hole in link in before compling up, the fibre plate will be tightly In casting position, there should be 1-64" clearance between the adjusting nut (4A9) and bridge lever (2A).

The matrix centring pin should shife freely in its bashing, but should not have the slightest side shake. In the event of the latter, adjust by the square nut (a_{XY}, Fig. 4p). Should the pin be to tight, slacken the mut, and then tap it downwards with a piece of wood or lead. If too tight, the spring (sA3) will not overcome it when the result ; if no casty is shifting, the adjuncat will be affected.

TORMO THE CENTRON FIX.— To correctly time the centring pix first take down the adjusting nut (SA, Fig. 40) so that the centring pin does not sent in place two thicknesses of spool paper between the die case and mould, and turn machine till they are lightly appleed. Wor take adjusting and tigst black till these adjusted to the spool of the spool of the spool of abuttnent (5x5) in centrum lever, fork. By this setting abuttnent (5x5) in centrum lever, fork, By this setting and down stroke of centrum lever, and the centring pin will have of the mould next without dragging it along the leve of the mould.

Set the draw rods from the lower jaws so that the centring pin enters exactly in the centre of cone hole of matrices, and see that the draw rods are not bent, and that they never touch the jaws as the latter are moving.

ALIGNING .- The centring-pin stand is fixed to the bridge by two hexagon-headed screws. Should the letter faces not come centrally on the body setwise, the pin stand (6A)—and with it the centring pin—may be adjusted by first loosening the hexagon-headed screws, and then moving the pin stand sideways by means of the two set screws, one on each side of the stand, which point in a direction parallel with the C pin block. For aligning purposes, two other screws are provided, these pointing in a direction parallel with the B pin block. Should the letter faces not be square upon their bodies, but lean to right or left, they may be squared by manipulating the two screws which work on the die case guide post (4AI, Fig. 50) near the pump. In making the latter adjustment, first slightly loosen the two-sided nut beneath guide-post spring, but not the hexagon-headed screws for centring-pin stand, as the centring pin is not affected by this adjustment.

Having centred the letter face on the body (preferably by a "star" matrix, or end shah, again look to see that the centring pite enters matrix correctly, as aligning draw rods from lower jaws. Before centring the type face on body the mould black should always be correctly adjusted to quad size. In removing the disc ease, be careful not to knock the matrix cone plate on the bottom screw holding the wire-end oryer on are not loose.

REMOVING BEDGE.—(The bridge is taken off with the matrix juws fully opened and the centring lever on the top throw, but should the machine get stuck so that the bridge cannot be taken off on account of the matrix jaws not being fully opened, disconnect the draw rod in the sliding frame $\langle \rho_A \rangle$, and the bridge can then be easily removed, and the type carrier also, if desired.

In replacing the bridge, always see that the alignment has not been affected by the removal, which may be the case should dirt get on the bridge feet and not be cleaned off. It is always a good plan to keep a small stock of capital H's or M's of the founts first cast from the machine, and always align up to them. This insures that any corrections likely to be made by hand from older type will always be in perfect alignment.

Do not leave any screws or nuts loose on the bridge. This remark applies to the whole machine,

GALLEY MECHANISM STARTING ACTION AND JUSTIFICATION WEDGES.

On the completion of every line two things are required—the taking of the completed line into the galley and the placing of the two justification wedges so that every space in the line next to be cast will be of sufficient thickness to make the line the required width. These two actions take place simultaneously, and their mechanisms are connected.

At the end of each line the paper receives two sets of performations, each set containing two holes. One hole in each set leads to the A pin block in the centre of the machine tory, and the other leads to the B or "mit" pin block. The air running to the A pin block blows up a piston ($r_{\rm B}$ ($r_{\rm B}$ s)), which uses a headed rold to engage a solut in the side of the L centra site very while the side of the side of the the centra site very while central plevers in this the headed rold. This rold is connected to a lever (μ_D), which projects under the justification wedge, and consequently the wedge also

(68)

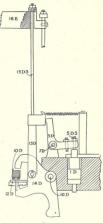


FIG. 51.

End view of mechanism for setting justifying wedges before starting line. Justifying air pin is blown up, causing the justifying-wedge lever-arm rod (1503) to be engaged by the centring-pin lever. This raises the wedge close of the centring tooth (120), so that it may be moved by the matrix jaws.

rises. A projection on the end of the justification wedge is now placed in the track of the matrix-jaw ends (see Fig. 52). In the meantime, the other perforation in the paper has led to some pin in the B pin block, and this pin decides the position in which the justification wedge shall be placed. As there are fifteen positions on the B pin block, so can the justification wedges assume fifteen positions each, the first position being when the wedges are fully forward. One wedge has a taper increasing .0075" (71 thousandths) from shift to shift, and the other wedge a finer taper, only increasing .0005" (half a thousandth) per shift. The smallest space will be that cast when the wedges are in the extreme forward (I-I) position, and this can be gradually increased by moving the finely-tapered wedge shift by shift up to the fifteenth position. It can then be brought back to the first position, and the coarse wedge shifted to the next position, when .0075" will have been added. By moving down the fine wedge again, and at the end of each fifteenth position moving the coarse wedge one shift, a wide range of space thicknesses may be obtained (15 × 15 = 225).

As the positioning of these wedges takes place after the completion of the previous line, and also whilst they are being positioned no letters are required, two things must happen: Firstly, the completed line must be removed to make room for the line to come, and secondly, the pump mechanism of the metal pot must These requirements are fulfilled simulbe stopped. taneously, and by mechanism in connection with the justification - wedge lifters. A continuation on the wedge-lifting lever, each time the latter is acted upon by its rod engaging the die-centring lever, presses against a rock lever (qDI, Fig. 53) connected to a rod (SD) which leads to a galley-action trip lever (45F) at the front of the machine. Screwed to this rod is a projection (op), the end of which operates the rod (40p) containing the collar governing the metal pot action, referred to in the chapter on the pump. Thus each time the wedge lever (14D) lifts the justification wedges, it also sends the galley-trip rod (8p) forward to start the galley action. and the pump-trip rod (49D) forward to stop the pump. As the wedge-lifting rod disconnects itself from the diecentring lever, the wedge drops on the fixed tooth (12D, Fig. 52) in the position found for it, and the two rods (8D and 40D) are returned by the action of the spring (50D) attached to the pump-trip rod (49D).

Each time the rock lever (QDI) is operated upon by one wedge lever, the galley-trip rod (8D) goes forward 3-16", but when both wedge levers are lifted the galley-

(69)

trip rod goes forward double that distance. The screw (452) in gall-y-adio the plear (457, Fig. 53) can be laken back so that when the galley-strip rod (5b) goes forward only $\geq 1.00^{-1}$, it will not start the galley aution. The strip of the strip of the strip of the strip of the tion rods (505, Fig. 53) at once to knock out the galley tim lever. Tabular matter, with any number of columns, may be set upon the machine, and each olumn will be correctly justified as a separate fine, but not taken to the galley time fine has column has been set, taken to the galley time fine has column has been set, the pool of the galley time fine has the galley time of the galley time for the galley time fine has the galley time for the galley time fine has the galley time for the galley time fits as a strip of the galley time fits and the strip of the galley time fits as a strip of the galley time fits and the strip of the galley time fits as a strip of the galley time fits and the strip of the galley time fits and the strip of the galley time fits and the strip of the galley time fits as a strip of

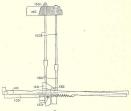
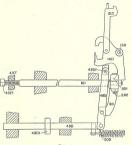



FIG. 52.

Front view of unchanges for setting justifying wedges before starting line. The front wedge is lifted to clear the centring food (1520), to allow the log at its left end to be engaged by the matrix jaws and moved to its position for the next line.

Fig. 54 shows the action of the justification-wedge levers (130) upon the rock lever (01). The first shows the wedge lever 1 at rest. The second shows justificationwedge and pushing galley-tim rod forward infraction wedge and pushing galley-tim rod forward wedge lever (10) in operation. Hitting the course justification wedge, and pushing galley-tim rod forward 3-rof. The fourth shows both wedge levers lifting together, lifting both wedges and sending galley-trip rod forward 3-8". The double perforation will have been obtained by the keyboard operator depressing a key on both justification rows at the same time, the keys touched being indicated by the bottom figures in the drum squares. Thus, if the square read 3-5, he would touch 3 on the top row and 5 on the top and bottom rows

FIG. 53.

The lower end of the justification wridge lever (1,m) bears against the trock lever (1,m), which is information apon like the rod rates (1,m), attached to the trip (1,m), which is information (1,m), attached to the trip (1,m), attached to the line, there are a start of the line (1,m), attached to the line information (1,m), and (1,m), attached to the line (1,m), attached to the line, the end of the line, therefore, of your higher the line prior (1,m), the promy end of the line (1,m), attached to the line (1,m), the prior (1,m), the most of the line (1,m), the line (1,m), the prior (1,m) of maximum (1,m), the line (1,m) of the line (1,m), the prime end of action, when the weiges are bring set and the galley trip(ed). The prime trip end (1,m) of the line (1,m)

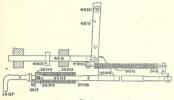
together. In passing the paper through the caster (it going through backwards) the double "5" perforations will cause both wedges to be drawn to the fifth pin position, and the "3" perforation will then cause the coarse wedge to assume the third pin position.

The justification wedges may be removed by first taking off the square block found near the rear stud on which the B matrix

> the wedge going nearest the transfer wedge is the one possessing most taper (.0075"). When it is desired to turn the machine without casting type, the handle (35H7, Fig. 55) must be pulled back and hooked in the catch plate (36H). This is connected by a spring hox to a rod (35HI) carrying a plate with a cranked drawn to the left, this crank plate pushes the trip tube (49H), causing the collar to disconnect the pump latch from pump operating lever. The trip - rod spring returns this rod when disconnected from the catch plate.

tongs rock, and then raising the lifting rods (15D3, Fig. 52). In replacing, remember that

trip rod, if desired, take off the crank plate (35H4), and also the split pin at the extreme end of the rod on the pulley side of machine. and draw through from the galley side.


Adjustments : LIFT OF JUSTIFICATION WEDGES. - The justification wedges have teeth on their under a groove

9 80

wedge (IOD), when lifted, can be freely drawn along the thin plate. When the wedge has been drawn to the desired position it is dropped, and the teeth engage a fixed tooth on the A pin block. The points to watch arethe wedges must be raised so that their teeth are above the fixed tooth, and will not drag on it : the projection on the end of the wedges must be high enough for the matrix-jaw arms to properly engage them ; the wedges must not be raised so high that they are forced on the top against the locking bar or C pin-block casting. Put wedges in, and bring them to the extreme forward position (5-unit). Put one of the rods (15D3, Fig. 24) in

Same view of pump-trip collar as Fig. 9A. Also shows spring (50b) for moving the collar back from behind the latch, as soon as the justification-wedge lifting lever descends and releases the trip table (40²). This view shows the pump locked out by the hand trip, which has moved the collar forward behind the latch. The hand trip is listched upon the catch

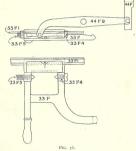
slot of centring lever, and turn machine till centring lever reaches its highest position. Then press tightly against the rock lever (qDI), when the nut (I5DI) on rod (I5D3) should clear top of centring lever by 1-64". Then treat the rod for other wedge in similar manner. In testing thus, the hand pump trip should be disengaged from its latch, to put weight on the levers (I3D and I4D). Adjust the bell crank (5D) by the screw nearest fulcrum. To do this, insert rod in centring lever, and turn machine to the point where rod will drop out by itself. In doing so it should fall lightly against the retaining plate on

The stop screw (5D3) in bell crank should be so adjusted that it clears the piston $1-6q^*$, so as to give the piston an opportunity of commencing its ascent without any load upon it.

Care should be taken not to burr or bend the justification wedges, or the justification will be rendered indifferent.

Issummers nock norma.—Should the rock lever (opt, Fig. 3) become discagaged, let the purpoconnecting latch (3)mr) be taken away from the operating latch engaged on lever, as in Fig. 8 : then take off the nump-trip spring (so, Fig. 3), and hook up the handle (b) which replaced. Should the rock lever become disemmed the line will not be taken to the pailey.

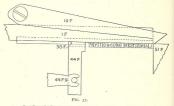
EXEMPTING PERFORMENCE OF LARGE TO take out the collar of (400), first take pump-rocker arm latch away from collar by turning machine with latch engaged, as in Fig. 8. Take of the spring (500, disengage rock lever, to allow link (450) to swing back, and then sincken set serve in collar (400). The rod can now be withdrawn from pulley side of machine, the collar dromoting off.


In the case of the roller having moved along the tube, follow the above instructions except removing the rod. The roller can be reached by putting the hand through the door. Adjust so that, with the hand trip disconnected from the catch plate (36H, Fig. 55) and the spring (50D) connected up, the roller will lav 1-32" to the side of the pump rocker arm latch (33HI). The set screw in the roller should be pointing downwards after the spring (50D) is connected up, and it should be felt to see that it does not strike any of the air pipes as the collar moves along to cut off the metal supply. A sign that the roller has slipped to the left is the obtaining of letters at the end of each line whilst the justification wedges are being set. If the roller be set too far to the right the pump will not work, as the pump rocker-arm latch will be constantly disengaged.

In the above instructions if has been mentioned that the pump rocker-arm latch (33π) should be taken back, that is, away from the trip collar. When this cannot be done, the collar being behind the latch, turn the machine till the pump rocker arm has partly started on the back stroke—the machine being at 170° or 1755—and then prise the pump bell-crank lever in pump bracket backwards with a screwdriver, when the latch will readily drop in, and the machine may then be turned further by hand. Or the arm (334, Fig. 6) may be pulled forward by hand, by reaching it through the opening between B and C can levers at back of machine, having the machine at the above position.

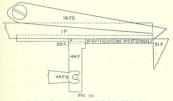
REMOVING GALLEV-RIP ROD.—To take out galleytrip rod (8D, Fig. 53), unscrew rock-lever arm from end of rod, and push through to galley side of machine, first removing the galley-trip lever and column-pusher spring box.

LINE SHIFTING AND GALLEY MECHANISM.


The type is guided by the pusher into a channel near the galley. One side of the channel is a fixed wall, whilst the other side is movable, being kept forward by

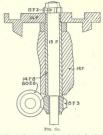

Plan and side view of operating-lever latch (137).

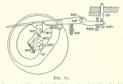
a spring, and so set that the channel is slightly less in width than the body of the type to be cast. The type will thus be supported by being gripped between the



Short line : the line support is, therefore, not pushed far enough forward, consequently it asthese between the column pusher and the stop skide and througs the operating-lever label. The end and side views of the line support show that it pushes the stop skide back because it is not far enough forward for its prorgs to enter the proves in the skide.

Long line caught between the column peaker (12) and stop slide (442). When the peaker moves to the right the stop slide is, therefore, peaked back with it, and the operating-lever listic released, stopping the machine. channel walls. Each wall carries a spring hook to prevent the type failing back as the purcher retires. Upon the completions of a line a couple of hooks carch it, and passing a cutter on the way for eleasing of any burrs left in casting. When the line has reached a position opposite the galley mouth, a gate thes drops, and the pushed into the galley. The gate thes drops, and the start line start line.


One side of the galley mouth has a sliding wall, which connects to a lever operating on the starting-lever latch (see Fig. 56). As the line of type is being withdrawn to the galley, the forward end is supported by a


Line of correct length, pushed in between the fixed channel block and stop slide. The line-support paragis pass into the grooves in the stop slide, as shown in the end view, because it has been pushed far enough forward by the line for the plate of the support to clear the slide.

slide. This slide has a keyway at one end to correspond with a key on the galley-wall slide (4μ). Should the line be shorter than the galley mouth, the type support slide, key will not enter the keyway on the galley-wall slide, but will pash it, causing the starting lever to disengage the latch, with the result that the field shifter brings the belt on to the hone palley. This is shown in our fut coungo the cauged he keyway on galley-wall stop slide (4μ), and as the column pasher (1π) comes for ward, the slide will operate the lever (4μ) ording to ording the ording the cauged he keyway on galley-wall stop

(78)

Section through galley can (14P), galley-can sleeve (14P8), and galley-can stand (16P). Shows that the ratchet (15P2) is driven continuously from the cam-blaft worm (5ool), through the worm wheel (15P2) and shaft (15P), while the galley cam remains at rest, unless connected to the ratchet.

Top view of galley can just as the driving pavel (14Pi) has been released by the forward movement of the trip rod (8b), which probes to the left end of the trip lever (4pi) to the ranz, releasing the paul. Note: The pavel is shown retting upon the top of the ratchet tooth, and, as the ratchet rolates, will engage the next tooth. The can will then rolate with the ratchet.

the starting-lever latch. Should the line be too long, the end letter or quad will push the slide (44F) forward, thereby causing the machine to stop. This is shown in Fig. 58. Fig. 59 shows a line of correct length entering the galley mouth.

The following is the action of the galley movement : A vertical shaft (15F, Fig. 60), worked by a worm upon the hand-wheel shaft, constantly revolves, taking with

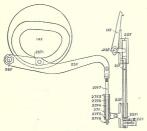
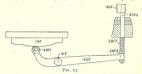



FIG. 62.

lite-book operating mechanism. Shows lise hook (rep) at the for-of its struck, just as it has placed the lise in front of the patter. At its place is the structure of the structure of the structure of line bar large structure of the structure of the structure of at the struck of the operating side is γ' , in order to restore the line for a α place in basis from policit forward in struct of the gaily. The

port after a 42 pica line has been pelled forward in front of the galley. The roke of the line host carriage is the difference between the stroke of the slid ad the clearance of the bar. For the sake of elements the operating har has been drawn turned on its side.

it a ratchet (15r2) fixed upon its top end. A flat cam (TAF), through the centre of which the vertical shaft passes, remains idle, hooked up to a trip lever (45F) by a loose pawl (14FI, Fig. 61). As soon as the trip lever releases the pawl, as shown in Fig. 61, the latter engages the revolving teeth (15F2) of the vertical shaft, and the cam is carried round. In going round, the cam groove on top of cam plate operates a lever (25F, Fig. 62) which connects to a slide bar (21F) carrying the line hook (19F). and this removes the line to the galley. A cam surface on the underside of cam plate operates a lever (40F, Fig. 63) to raise the gate (or rule) at the mouth of galley,

m : Shows rule cam, on the bottom of the galley rule (409), and springs (3977) for seating it after a

and a cam surface around the cam plate operates a lever (5F, Figs. 64 and 65), which pushes the line into the galley. On the completion of the cam's revolution, it is again hooked up, and remains idle till the next line is ready. One revolution of the cam occupies seven

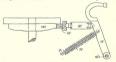
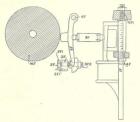



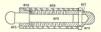
FIG. 64.

E114: 04, de view of columns-praber cam on the under side of the galley cam column-puther lever (3y) is shown in section, with the spring box e against it, it or moving the puther to the right to place a line on the ss also the spring (3y) for restoring the puther to its position of rest of its stroke.

revolutions of the machine, during which time other letters are being cast. The shortest properly-justified line which can be set upon the machine must contain at least six type bodies.

Adjustments: TRING CALLEY-ACTION DRIVEN FART-—If the hand/wheel shaft (acting as an intermediate goar for cam shafts) be removed, in replacing see that the figuring on the worm (Strob) corresponds with the figuring on gear wheel (1752, Fig. 6o). To test, when properly coupled in (see chapter on cams), put a justification-wedge lifting rod into the notch in the-centing (gy) has relaced the prof (cgr). The machine-should then make a complete revolution before the cam starts to revolve. This gives the last letter of a line time to the relation of the start of

FIG. 65.


Plan view of column pasher and operating mechanism. Shows the method of adjusting the pusher for different points, by regulating the pusher adjusting server [12].

get into the type channel, and the puscher time to recede, before the line hook goes forward. If the ratchet on the vertical shaft engages the pawl too soon, the last letter will be left behind. The worm gear (15F2) will then want moving one tooth to the right or left. Fig. for shows the position on the ratchet that the pawl (14F1) should fall when tripned by the rod (8b).

As the galley-action cam carries a long sleeve (14F8, Fig. 60), through which the vertical shaft (15F) runs, do not forget to occasionally lubricate through the hole in centre of the shaft top end, also through the hole in cam near the ratchet teeth, as this is often overlooked.

Adjust the trip lever by the end screw (45T, Fig. 61) so that it levers the pavel (4TT) about $\frac{1}{2}$ when one wedge-fifting rol has been engaged by discentring lever and the lever raised to top position. Adjust the stop screw (4570) so that the other screw (4571), when the galley can is revolving, just clease and of trip rol (80), and the end of pavel (1471) scats fully into trip-lever hook without screpping side of lever.

TRAVERSE OF INE TO GALLEY NOUTL—Adjust the score (227, $F_1 \in 50$ at end of galley frame so that the line hook (109) brings the end letter in a line level with fixed galley wall. Then see that the connecting rod (2777) gives about $\frac{1}{2}$ compression in spring box at end o both forward and back stroke. To do this, bring the nut (2778) lightly against the end abottment (2775), when the calley cam is at the end of its revolution, and

FIG. 66.

Section through column-pusher spring box.

obtain the desired compression at end of stroke by adjusting the rod (27F7) on the eye connection,

COLUMN PISSIES.—Adjust the column pusher [17, Fig. 64) sleways, by the screw (gr1) centres upon which it pivots, so that it moves freely, has no side shake, and enters the galley mouth with a clearance from the fixed galley wall equal to the thickness of a piece of spool paper.

The column-pusher spring box (8F, Fig. 65) should be adjusted, by the adjustable ball end, so that the line is pushed into the galley mouth 1-64" beyond the galley gate.

COLUMN-FUSHER ADJUSTING SCREW.—Next turn the column-pusher adjusting screw (2FT, Fig. 65) to the figure 12, then put a pica em quad in type channel, and set the column pusher, by means of the adjusting screw (3F2), so that the pica line can be drawn along without fouling the column pusher. All other founts will then work correctly. **GALLEV GATE.**—The galley gate or rule should be so set that it clears the column pusher $1-6q^*$ just before the column pusher recedes. This is obtained from the nut (3qeq, Fig. 63) on the lifting rod of gate. This gate should drop redely ; if not, clean the guide rod (3qe3) and see that the short guide pin at other end is not bent.

BURE TEIMMER.—To set the trimmer on the moving wall of type channel, put a quad partly in channel (not against the nick ridge) and bring knile lightly up to quad and screw up. As the head of the trimmer screw is out of proportion to the screw itself, do not put too much pressure on with the screwdriver, or it will break the screw head off.

REMOVING LINE HOOK.—To remove line hook, disconnect lever (329, Fig. 62) from rod (27 ν 7), and remove the screw (289), which is held by nut at bottom. Now take off the stop piece (227) at end of galley casting, and remove the slide piece (239). The line hook can now be easily withdrawn through arch in column pusher without straining it.

Repractive fixity more metricities $M_{\rm eff}$ in the line-hook mechanism (Fig. 6.3), first insert the skile ($2\alpha p$), taking care not to lose the two spring plungers. Then insert the marrow rol ($2\pi p$). In t placing this, the spring plunger on the top of this role. There is also spring plunger on the top of this rol. Should the line hook ($1\alpha p$) have been removed, this must next be merted, the projection on it being placed in the slot on the bottom of the rol ($2\pi p$). The end shife ($2\pi p$) The undue on the end stop prices ($2\pi p$).

TVFR-cHANNEL SPHING.—These should be examined from time to time to see that the shank of the spring does not protrude at any part of its length above the level of the channel block. If such a condition exists, as the type accumulates it will cause the hook to recede and become inoperative, and allow the type to turn. The hook itself should always come well forward of the face of channel block.

CHANGING FOUNTS.

Turn the machine to the most useful position for changing, which will be at 360° , or when the pin jaws have just commenced to open. In this position the die case may be removed, the normal wedge changed, and the mould cross-block connecting link removed. accessible in this position. First remove the centring-lever connecting pin and withdraw fibre plate. Unhook the die case from the slide connected to the draw rod on C pin block, and bring the die case to the centre of its carrying frame. Now withdraw, slightly depressing the bridge lever to prevent the centring pin dragging on the top of the die case. Turn off the water supply, remove the bridge, and then the mould. When replacing new mould, very slightly oil the mould base and slide it up to its position. Very lightly screw the clamps up to put the mould properly against the pin blocks, and then screw the mould to base. See that the jet piece in cross block is clean and working freely and then connect the cross block to carrier. Replace the bridge and insert die case in exactly the reverse manner of taking it off. Now change the normal wedge and adjust the movable type-channel wall to suit the body of type to be cast, also the column pusher. Bring the quad to correct size, and then align up ; alter galley measure. This latter alteration should be carried out whilst the machine is running and type being cast.

Upon taking off the mould, blow out all water and put the mould away clean, with the base slightly oiled to prevent rusting. In replacing new mould and bridge, see that all the surfaces of contact are scrupulously clean. Examine the cross block to see that the jet piece is clean and working freely, and, in replacing, take care the jet piece does not fall out. Oil the link connecting the cross block to carrier. In replacing the bridge be sure not to knock the centring pin on the mould, or the latter may become seriously damaged if the blade or blade walls be struck. Always insert the lubricators into the mould before placing the mould on machine. Never bend the transfer wedge cover to insert the lubricator, as in time it will break by such treatment. Regulate the water before it enters the mould, and not as it leaves it. This is done by the large water tap on the machine. Do not let the water exhaust be throttled. or the water may work into parts of the mould where it should not be.

CENTRING, SIZING, AND ALIGNING.

Upon changing a fount, after having made the alterations described above, it remains to "centre" the letters upon their bodies. This is effected by first making the quad exact to size, according to the "set." After this the "star" matrix should be adjusted so that it comes exactly in the centre, which is obtained by manipulating the screws in bridge working upon the centring-pin post. A few capital "M's" or "H's" should then be cast, and these should be compared with those already in use to see that their alignment is exactly the same. If not, make them both similar, otherwise any corrections made from the old type will be out of alignment. The importance of this cannot be too strongly impressed upon attendants. In the case of a machine being installed no type should be cast for the case until the correctness of the alignment has been thoroughly proved, as all future founts must be made up to that standard. It must not overhang either top or bottom in the slightest degree. Although the " star matrix is the recognised one from which to obtain the alignment, and has been made for that purpose, an alternative method is to first make the quad exactly to size, and then cast some dashes (" - "). First centre these setwise so that they do not overhang either side, and then centre them bodywise so that, if three types be laid on a flat surface, with the centre one having the nick reversed, the dashes will present a straight and unbroken line. By this method one need never fear of having different alignments.

Never commerce a job without seeing that the centring puis entring the matrix correctly, both as to time and position. If the bridge setting be correct, as described in the utile on that subject, the timing need described in the time of the setting of the setting tracted for entries. It is important to the proteen of the entries of the setting of the setting in connection with the alignment of the output. Should he pin next the cone slightly to one side, it will wear the cone on that side where it strakes, and in time the alignment will be affected. It should be examined before commenting work after each meal, and the champ before commenting work after each meal, and the champ before to become loose.

Do not let the matrices bang on the mould, but let the guide-post bushes take the force of the descent. The matrix wires should never be pressing on the bottom of matrix holes, or the matrix face will become hammered, which will result in the letter heads pulling off.

Should the mould be over lubricated, whe the matrices and mould top with a clean piece of rag, or metal will gradually adhere, causing the type to be cast with a burr. Keep the matrices clean, especially in the cone holes. Should dirt or metal accumulate in the properly, and bad alignment will be the result. In storing matrices, keep the cone holes downwards to prevent dirt getting into them.

The mould blade must be drawn fully back before the centring pin is seated, or it will cause the matrices to wear out.

Each morning test the screws holding the matrix wire shoe in position, as it is possible they may work loose. Also test the screw in mould cross-block link.

Periodically examine the centring pin to see that it is not loose in its bearing. It must not have the slightest shake, although it must move up and down freely.

Follow the measurements for the type as formulated by the Monotype Corporation, and do not reduce or enlarge according to whims of those who may not understand the Monotype system. If a narrower or wider measure is desired, get the keyboard operator to deduct or add a few units. Should the type be small in measurement the quad lines will all be too long : should the type be larger than the specified measurements, the quad lines will be too short. The explanation is that if the quad. for example, be left one-thousandth (.001") too large, all the letters will each be that amount too large. A quad line may have, say, 40 pieces of type in the line, while the solid line may have 70. In the result such quad line would be .040" too large, whilst the letter line would be .070" too large, making the quad line .030" relatively short. It will be understood how the reverse is the case when type is under size. Through not understanding this point, bad justification is very often obtained, as the difference in the length of such lines depends upon the difference of the number of types in each line.

JUSTIFICATION.

Provided the keyboard operator has done his work poperly, bad jungt mice and the set of the following conditions exist. The wedges must not be dramaged but key clean, the type must be the two soils, and the normalwedge nods must be drawn fully back helver the mould halke is operated, and the must at the end of the transfer rolds must not be loose. Also the 4-unit space must be correct. In addition to this, see that the justification wedges me belog properly drawn to hash observed and the set of the second second second second second wedges are belog properly drawn to hash observed lause bad institution and hundificatent type sizes.

THE PRODUCTION OF GOOD TYPE.

To be considered perfect, a type must possess the following attributes :---

r. It must be quite solid, have the corners sharp, a solid flat foot, the face sharp and well defined, and must be of the right consistency, *i.e.*, neither too soft nor too brittle.

 It must be square in all directions, exact to size pointwise and setwise, and must be correct height, i.e., from the foot to the face of the character.

Of first importance in governing the quality of the type produced is the adjustment of the pump connections; after that everything depends upon the attendant and the metal he is working with. The pump adjustments being correct, as given under the heading on the pump, it remains solely a question of metal, which must be influenced by some outside condition.

In the case of bad type, imake sure of the following points: that a suitable quantify of metal enters the point; that the port is not choked with dross; also see that no dross exists in or on the plunger thick holes, and seating, pump-body hole or nozzic hole. The pump body should be cleaned every three or four weeks, and a drill run up the main channel till it can be seen at the other end. The nozzie should be drilled every week whowed to appears to their it is not. If de myster whole drills the other is is not. If de myster whole drills the other drilled every hard,

The puintp connections should all be free and kept well olded. The pixton should be a free fit in pump body, but should never be field. No metal should exist its stroke. It should be removed during inneal times and when not in use. Before replacing the pixton, warm it, and see that it is clean. If the pixton is hard to turn, and one heing withdrawn from the pump-hody is covered difficult to yohing needly area.

The metal should be occasionally cleaned and run into small ingoits. The dross on the top of the pot consists of antimony (being lighter than leaf), oxidised metal and dirt. Do not throw it away *m* block, but remover out dirt and property the metal. In cases where metal property, but where there is no stereotyper, the operator must exercise his own intelligence. A good plan is to heat the metal well and then put a little resin

6

or pure Russian tallow on the top, stirring well. Then press the substance floating on the top well against the side of the pot, to squeeze the metal from the dirt. Remove the dirt with a perforated spoon, and scrape the side of the pot where the dirt was squeezed against. Afterwards puddle the metal well and skim again. If these skimmings are dirt only, when cold it will be possible to crumble them into dust. If they contain metal they will be quite solid. Be careful of any new nostrums for cleaning metal. If they contain acids or salts, the hat valve may become eaten away, and the small hole in it become very large. The main point is to keep the antimony well mixed with the lead. Being lighter, it has a tendency to rise and oxidise. Occasional puddling preserves the mixture, and gives the dirt in the metal an opportunity of rising to the top. The practice of dipping the piston in vaseline is rather overdone. It is impossible that the vaseline used can be absolutely pure; it must contain some mineral matter. After the oils in it have evaporated in the well arm and been carried to the types, there remains the mineral matters. These adhere to the bottom of the piston and to the pump body channel, in time causing the latter to become choked. It is far better to slightly wine the piston with an oily rag or brush it with plumhave taking care to shake off any surplus plumhage. In entering the piston skim away any dross above the pump body, so that the piston may enter clean metal and not take down dirt with it.

Regulate the metal passing through the port so that the type is solid, and too much metal does not remain in nozize. In the latter event, stop-easting will be the result. For small type the pixton should have a short, result is a store of the stop of the stop of the stop theoretically, the port must be wider open for large type than small, but in practice it is often found necessary to reduce the port opening for large type to prevent stop-easting. As it is imposible to see the metal entering beneath the pixtom the action must be based the attendust score for reflection and discretion.

Occasionally remove the port screw, clean it and oil it to prevent it becoming corroded in.

Never run the pot up without making sure that the nozzle end of pump body is upon its seat, or the nozzle will become damaged against the mould. The nozzle should be a perfect fit in mould bell to prevent splashing. The dross on the top of the metal near the nozzle should be kept away so as to allow the jet prieces from the mould to melt quickly. In the case of the nozzle splashing or the jets not being melted, they may accumulate so that it is impossible to eject any more, and the cross block will become wedged. In this event do not force the machine round, but run the pot down and clear away all the jet pieces from the opening through which they fall.

The height of the type depends upon the height of the mould blade and the depth of the matrix. These are fixed quantities, and will only alter through wear, which should be very small if proper care and attention is given to the adjustment of the matrix case.

The standard height for type from the foot of the type to the face of the character is .018.

Further information in connection with the question of good type will be found in the article dealing with the pump adjustments.

CARE OF MATRICES.

Properly treated these will last a very long time, and the unavoidable wear is of the minutest character

Of first importance in securing the long life of a set of matrices is to take care that the lengths of the matrixcase is brought caredly into position for the engaging of the carting pint in a principal security of the security of the carting pint in a principal security in the matrix is correct—in short, patitular taketion must be paid to the setting of the bridge adjustments and all connected with the movement of the matrix case. Having done this, the parts concerned should be examined as the set of the setting of the setting in the setting of the setting this does not be adjusted as the setting done with the movement of the matrix setting as the setting of the setting in the setting done this, the parts concerned should be examined as the setting area to give both events.

When putting the matrix case into position, make sure that the bridge arm is in the "up" position, and the fibre stop plate out of the carrying frame, and depress the top lever arm, taking care that the matrices are not drawn across the end of the centring pin.

"Carefully test the correctness of the adjustments of the matrix case before letting the machine make one single revolution by power, trying matrices at opposite ends of the matrix case. When doing this in the sumit position it is experimental with a 1 sound conbination. This before performed with a 1 sound contingent provides the state of the sound of the human. This there performed with a 1 sound contingent performance of the sound of the sound of the human. This there performed with a sound contingent performance of the sound of the s

G 2

very closely that the centring pin is exactly central when it enters the matrix in each position,

Most careful attention should be paid by the operator to the matrix-tong jaws and pin-tong jaws which should always meet, and the draw rods which should always be central with cone holes, or a set of matrices can be rendered useless for good work after a very short run.

It is evident that to enable the centring pin to do its work properly it must be setted in the matrix before the matrix is depressed sufficiently to bruch the mould. If otherwise, not only bad work but damage to both mould and matrices is the inevitable result. Undue pressure on the mould bruises the faces of the matrices in time, and causes the heads of the types to pull off, resulting in "galashes."

The matrices should be thoroughly brushed before being inserted in the machine, and cleaned every morning when in continual use, otherwise the grit which may accumulate between and in them will cause excessive wear, making them slack in the case. Carefully examine the cone holes to see that no metal or other foreign matter is deposited there—the slightest speck will affect the alignment.

The best method of cleaning them is to wash them in benzine—taking care that the benzine is perfectly clean—and then blow out from the cone holes and faces the loosened dirt by means of compressed air (which can be obtained by detaching the air pipe from one of the keyboards) and the careful use of a soft brush to remove the small particles.

Oil should be kept from the faces as much as possible while the machine is running, as it causes burrs on the type.

If by chance a character pulls off in the matrix, care should be taken in melting it out not to injure the matrix, which should be held in a pair of tweezers, cone hole upwards, and after dhypnig in oil the lower end should be smartly dipped into the metal pot, about never goes in sufficiently far to be most into: that are hole. This operation should be repeated quickly until the offending metal drops out.

On no account should the matrix be hit against anything hard, as this must cause injury,

Should a matrix become damaged in any manner likely to impair its truth it should be at once discarded and replaced.

When not in use the matrices should be carefully wrapped in a clean rag so that no dust or dirt may settle on them, and they should always be placed face upwards to protect the cone holes.

Don't grow careless in handling a set of matrices as soon as the sheen of newness has worn off; remember that they have more bearing on the appearance of the final product than any part of the machine, not excepting the mould.

With regard to the matrix case, before inserting in the machine---

- (a) Try the matrix-case screws to see they are tight, and re-examine them from time to time.
- (b) Make sure there are no burrs on the side of the matrix case.

(c) See that it enters the bridge quite easily.

When the bridge has been off, wipe the centring pin before replacing in position.

When oiling the centring pin and bushings on the bridge which must be done when the bridge is off the machine, care must be taken that the oil does not overflow and run into the cone holes of the matrices, or bad faces and indifferent alignment will be the result.

SYSTEM OF LOCATING DERANGEMENTS.

As before mentioned, a derangement should be traced to its source. For instance, should an attendant be getting wrong characters, he must consider all the conditions likely to cause such an occurrence. First make sure that the keyboard operator has performed his work properly, i.e., that he has perforated correctly, and that his paper has not been fed on the twist. Being satisfied on this point, place the paper on the crossgirt, as in working position, with the pawl-ring lug against the stop screw (1620, Fig. 48), and see that the holes in crossgirt are fully uncovered and not partly blinded. If blinded, see if the paper letter perforations are in correct line with the side-guide perforations. These conditions being correct, depress the air bar and see that the air pins ascend and descend quickly. See that the pin jaws (in the case of the first pin failing) do not commence closing before the pin has blown up, and also ascertain if all the pins have dropped fully down. Next examine the jaws to see that they close correctly and are not hanging up, either in their spring box or through any nuts having become loose. Also see that the matrix draw rods have not become loose. By such a system of search all derangements can quickly be located.

(92)

THE FOLLOWING HINTS WILL BE FOUND USEFUL WHEN TROUBLES ARISE.

Reasons for escape of metal between the face of matrix and top of mould :--

Metal too hot or insufficient water running through the mould.

Allowing metal or oil to adhere to the faces of matrices.

General accumulation of dirt on top of mould.

The bridge or centring pin set incorrectly, or centring pin set too tight in bushing.

Matrix-case rods loose and centring pin not centring true in matrices,

The carrying-frame raising spring (4AI2) failing to lift carrying frame.

Surface of mould and face of matrices not true with each other.

Should the piston spring rod (2011) be allowed to seize in the piston-lever operating-rod crosshead (roy1), the pressure of metal will overcome the springs on centring pin (5A3) and spring on carrying-frame guide-rod cross-beam stud (4A11).

If any metal should fix itself to the matrices, great care must be taken that in removing it the faces of the matrices are not damaged by screwdriver, etc. To avert this, when it is absolutely necessary to use a screwdriver, place a thin brass rule closely under the screwdriver to protect the matrices from damage. It is preferable, where possible, to use a sharp knife rather than a screwdriver or other heavy implement.

If trouble should arise from the heads of characters pulling off it may be attributed to one of the following reasons :---

Bad metal. Bad bodies. Metal too hot.

The matrix case not being free in sliding frame or being tight on the cross-slide plate (bearing for matrix case) (c5), or the screws of the cross slide plate being loose.

The matrix case fouling the piston guide on pump body (if new pump has been placed in machine).

Incorrect setting of bridge and centring pin with relation to matrix-tong jaws.

- The piston not working freely and not being a good fit, or the nozzle and pump body not being perfectly cleaned.
- The characters being "off set," or there being a slight rising of mould blade,

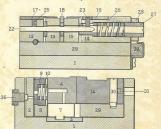
Incorrect setting of matrix case rods, *i.e.*, not centring correctly in matrices or binding between matrix jaws.

The type carrier not working freely in its position when the screws holding the shoes are tightened, or the coupling up piece for cross block being too tight.

THE MOULD.

Figures L and IL are perspective views of the top of the mould, with the cross side removed, from the front and back respectively. Figure IIL is a perspective view of the cross side with the jet blade attached. Figure IV, is a longitudinal section of the mould. Figure V, is a cross section of the mould. Figure VI, shows the blade, side blocks and adjacent parts disassembled, but in their relative positions.

The mould parts are numbered as follows :--

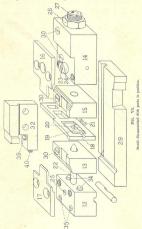

τ.	Base.		Blade spring.
2.	Gib.	23.	Blade spring adjusting screw,
3.	Cam.	24.	Blade spring check nut.
ă.	Cross block.	25	Blade spring set screw,
	Angle gate block.		Spring.
6	Fixed gate block.		Spring adjusting screw.
7	let blade.		Spring check nut.
	Back plate.		Intermediate plate,
	Back plate plug.		Taper eccentric dowel.
	Back plate spring.		Dowel set screws.
	Connecting piece.		Blade stop.
1.2	Screw block.	22	Cross slide lubricator.
	Screw side block.	2.4	Aligning screws.
	Spring block.		Alignment set screw.
12	Spring side block.		Gib screw,
	Cover spring.		Screw block screws,
1.4	Cover spring.		Spring block screws.
18	Blade.	20	Blade stop screws,
	Distance piece.		Blade stop screws.
	Shoe.		Cover screws.
	Nick pin.		Blade stop screws.
21.	Nick pin.		
			ijusting screw.

PLACING MOULD ON CASTING MACHINE.

I. Withdraw the cross slide and wipe the mould thoroughly with a clean cloth, fill the oil hole at the back of the cross slide and the spring screw, No. 27, with warm oil. Oil the cross slide and replace. Note carefully when doing so that the jet blade, No. 7, is in position, and that it does not project below the bottom surface of the gate blocks. Attach the two oil tubes and fill with warm oil.
Clean the bed and side walls of the mould seat on the casting machine, and, after oiling the bed, slide the mould into position and tighten the clamps and screws.

4. The connecting piece for connecting the cross slide with the type carrier must fit into place easily, and will do so providing the parts are all clean. This piece must be frequently and thoroughly oiled.

In starting the mould at the beginning of a run the cross slide should be uncoupled from the carrier and



FIGS. IV. AND V. ngitudinal and Cross Sections of Mould.

withdrawn until the oil hole at the back is uncovered. This hole should be filled with warm oil, and the oil cup which feeds thris oil hole should be filled. The oil cup which feeds through the spring screw should be half filled. A few drops of oil should be added to this cup from time to time as required.

The felt in the cross slide lubricator should be thoroughly saturated with oil.

If the blade is loose type will be cast large at the bottom setwise. This can be remedied by adjusting the blade-spring screw, 23. First release the check nut, then adjust the screw and again tighten the check nut. The blade should be quite free, but without shake. If the metal is allowed to become too hot, or not enough water is run through the mould, or the cross slide

is insufficiently lubricated, the hot type metal has a tendency to adhere to the intermediate plate and gate blocks. If this metal is allowed to accumulate the gate and the type will be east big at the bottom setwise, and if much metal is allowed to accumulate fins will be cast at the edges. To remedy this the bottom setwise, and if much metal will be east big at the cross slide should be removed, and the metal which has adhered to the bearing scaped of with a slarp pethoding great care being observed that the edges of the blocks and blade are not this operation, nor much the gib screws, 50, be adjusted.

See to it that the mould is at all times sufficiently lubricated; the books of felt on the outre end of the mould should be kept saturated with oil, and it should also be seen that it projects far enough to oil the gate block. If it becomes worn, it can be adjusted by inserting a piece of cardboard between the felt and the holder. Do not allow the metal pot to remain under the mould when not running.

TAKING THE MOULD APART FOR CLEANING.

CAUTION—In taking the mould apart grat care should be observed that only those screws are turned which are specified in the following instructions. If the screws β_0 , the isolated taget dowed pins N_0 , β_0 , set screws No. β_2 , the screw block screws No. β_7 , the set screws No. β_2 , the screw block screws No. β_7 , the spring block screws No. β_3 or the screws No. β_7 , the screws No. β_1 , the screw block screws No. β_7 , the screws No. β_1 , the screw block screws No. β_7 , the screws No. β_1 , the screws lock screws No. β_7 , the screws No. β_1 does not a screw block screws No. β_7 , the screws No. β_1 does not a screw block screws No. β_7 , the screws No. β_1 does not screw block screws No. β_7 does not screws No. β_1 does not screws how β_1 does not screws No. β_1 does not screws how β_1 does not screws No. β_1 does not screws how β_1 does not screws No. β_1 does not screws how β_1 does not screws No. β_1 does not β_2 does not β_1 does not screws No. β_2 does not β_1 does not screws No. β_1 does not β_2 does not screws No. β_1 does not β_2 does not screws No. β_2 does not β_2 does not β_2 does not screws No. β_2 does not β_2 does not β_2 does not screws No. β_2 does not β_2 does not

1. Remove the cross slide and gib.

 Take off the two cover springs, Nos. 16 and 17, by removing the four cover screws, No. 41.

 Remove all pressure from the spring, by releasing the check nut, No. 28, and the screw, No. 27.

 Remove the blade stop by taking out the screws, No. 42.

 Release the blade spring by loosening the set screw, No. 25, and the adjusting screw, No. 23, then push the spring out, by inserting a piece of wire a little smaller than the spring, through the spring screw, No. 27.

6. "Remove the blade by pulling it straight out from the back. The importance of handling this piece with the utmost care cannot be too strongly impressed upon the operator. This, as well as the other mould parts, is made as hard as glass, and the sharp edges are as easily nicked.

γ. Insert two or three thicknesses of paper in the place of the black, between the two blocks. Press the spring side block carefully towards the screw side block, using no greater force than necessary. Lift the block out of the mould. As the nick pin is loose in this block, care must be taken that it is not lost or broken. Lift out the screw side block.

This is as far as the mould need be taken apart for cleaning.

 Wash all parts with naphtha using a jeweller's brush and wipe with a clean cloth. Particles of metal that cannot be wiped off remove with a sharp penknife. Place upon a clean piece of paper for assembling.

ASSEMBLING THE MOULD.

r. Place the screw side block into position. Note that the felt washer clears the aligning screw, 34. Great care should be observed in replacing the side blocks, for ' i either the taper pins or the slots in which they fit are in the least nicked or distorted the mould will be out of adjustment, and must be returned to the makers.

2. Replace the blade. Place the shoe, No. 20, which fits within the blade, with the oil grooves down. The distance piece, No. 10, with its narrow end towards the nick pin groove. Care must be taken to see that it is pressed down on the shoe, otherwise the oil will not feed through the mould.

3. Replace the spring side block, first inserting the nick pin, which has previously been carefully cleaned of all adhering metal, a little lower in the slot than its normal position, so that it shall enter the nick of the blade as the block is seated.

4. Screw the spring adjusting screw, No. 27, until it touches the spring. Then push the blade forward to its furthermost point, which, if the distance piece has been inserted correctly, will be about \$4'\$ in advance of the side blocks. This is done to get the distance piece into position to receive the blade spring, No. 22.

Insert the blade spring until it is flush with the back of the mould ; set by tightening screw No. 25. Replace the spring covers and observe that they are screwed down solidly.

 Put tension on the spring by giving the spring screw, No. 27, two complete turns, then tighten the check nut.

8. Replace the blade stop,

 Adjust the pressure on blade by the screw and check nut, No. 23 and 24. The blade should work freely but without shake.

10. Oil thoroughly and replace the cross slide.

If through the circlessness of the operator the machine is started with the jet blade not in the mould the cross slide will have to be taken apart to clean the metal away from the spring, No. to, in the back plate. In reassembling great care must be taken that the parts are No. 44, and this handla old subjustment is the screw, No. 44, and this handla old subjustment is the screw, No. 45, and this handla old subjustment is the screw.

When the mould is taken off the casting machine the water should be blown out of the water holes, and the mould thoroughly oiled to prevent rust, and put into its correct box, and kept in a clean, dry place,

TABLE OF JUSTIFICATION FIGURES FOR STANDARD SPACES.

SET.	Constant.	Thin,	Middle.	Thick
6	2.5	2.2	2.9	3.8
61	2.4	1.15	2.9	3.8
61	2.3	1.14	2.8	3.8
555	2.2	1.13	2.7	3.8
7	2,1	1.12	2.7	3.8
71	2.1	1.11	2.6	3.8
71	1.15	I.10	2.6	3.8
71074	1.14	1.9	2.5	3.8
8	I.13	1.9	2.5	3.8
81	1.13	1.8	2.4	3.8
81	1.12	1.7	2.3	3.8
83	1.11	1.5	2.3	3.8
9	1.10	1.4	2.2	3.8
91	1.9	1.3	2.2	3.8
94	1.0	1.3	2.I	3.8
9999	1.8	1.2	1.15.	3.8
IO	1.7	I.I	1.15	3-8
101	1.6	I.I	1.14	3-8
101	1.6	-	1.14	3.8
101	1.5	_	1.13	3.8
II	1.4		1.13	3.8
111	I.3	_	1.12	3.8
111	, I.3		1.11	3.8
117	1.2	_	1.11	3.8

These figures show the Justification (red) Keys which must be used for the perforation of paper from which to cast these spaces.

The above produces spaces equal to three, four and five to the em quad of the set being cast. The "en" space is produced from the ordinary "en" space perforation.

(99)

TABLE OF TYPE SIZES.

								۰.												1							
		5	0	- 61		0	-	- 2	- 74		10	8	R -	- 8	0	0	0		10		01	-10	HI-	F	F	11	11
2	-1960	-0640	-2130	0868-	-5000	-7640	0372-	1007	1042-	1026-	1111	1140-	.131-	1815-	.1150-	. 1285-	-9101 ·	-1354-	-1189-	1424	1458-	-1493-	.1528-	-2021-	-1997-	-IGI.	.1667-
2	0637	0000	0.695	0725 .	0752 .	0781	0110	0339	0101	0897	0926	0955	4000	VIOI.	1042	1071	01100	.1128	. 11557	.1186	.1215	1244	1271	1101	*133t	.1359	,1380
£	0504	0521 .	0548 .	0075	0,022	0110	0320	0.1810	0310	0837	0364	0391	0318	0145	0978	6660	1010	1053	. 1080	6011	.1134	1101	31185	21215	1242	.1209	962X.
2	0.552	0577 .	0000 .	0017 .	c653 .	0627 .	0,702	0727 .	0752	0777	0892	0818	0853	0828	1000	0908	0953	8460.	CO31	8701	1053	8201	EOI1	6211	1153	8411	1204
×	0050	0538 .	0356 .	0520 .	0003 .	0525	0648 .	0674 .	- 16jo	oyr8 .	0741	0764	0787	0110	0833	0850	o880	Coto?	0126	0140	0371	2010	1019	4 NOT	1001	1087	TILL
-	0407 .	0485 .	. 6050	0.531 -	0358 .	· 1:450	. 4660	0.015 .	0657 .	0558 .	. 6450 .	0200	0721 .	0743 .	0764	0785 .	0.800	c6228 .	c840 .	0870	c6991'.	0113	0.34	0155	9400	2000	STOL .
2	0.424 -	0.644	1 1990	0.482 .	0302 -	1520	0140 .	0530	- 0720	0103 .	0012 .	c632 .	c656 .	c675 .	0101	0714	0733 .	0753	0772	1670.	e810 .	-0630-	0180	0363	0887	0000	0160
	0.382 .	. 0440	0417 .	0434	0451 .	0400	adBb .	2010	0531	0518	0550	6450	0540	0.668	0015	0643	0100	0027	4030	5140	0710	0747	1940	.0781	8440.		.0833
•	0540 .	0155 .	0150	. 9810	0401	0417 .	0432 .	0448 .	- Egbo	0478 .	0404	- 40¥0	0.525	0340	0550	0571	0540	000	6017	- L(00	0448	1950	0679	4690.	6010	0725	-0741
	0207	0.311.	0.324 .	. \$410	0.151	2020	0.X7K	20/0	5010	0419	0432	0440	0459	0473	0486	0050	\$150	0537	0740	0554	7920.	1950.	0594	0003	0621	6634	643
	0255	0266 .	0278 .	0.050	1000	0.112	0.124	01.96	0.147	0339	0.720	. 2520.	4050	0405	0412	0418	0440	1510.	0101	0475	0486	3040.	0050.	.0521	2630.	.0543	9550.
	0212	0222	0232	024Y	0251	0100	0370	0350	0189	0010	0100	0316	0325	0335	0.547	0357	4980	0126	6310	0195	0405	0415	0424	.0434	.0445	.0455	2010.
e	01,70	0177 -	0185	0103	0101	0108	0110	0.024	1220.	01.01	0247	0355	0101	0370	3210.	.0285	2010.	1050.	00100	0310	92201	-0352	0110	.0347	.0354	10101	.0370
	0.1244	04432 .	oldior.	04823	05015	005205	101200	102200	095787	005050	261000	000,000	0005500	1000741	101044	007157	051.00	007525	007716	601/00	008101.	202800	003438	180800	003873	090100	002250
	i	0.1	1	i	01-10	i	i	i	i	i	i	l	li	li	0.1		1	i	10	1-10		01		11-1-1	1	i l	1

PERFORATION TABLE.

By means of the figures at the bottom and right of the above tables are proper lower. This is a proper lower, the start of the bottom of the tables is proper lower. This is a proper lower with the transfer weight of a start to the particular role, operating the transfer weight produces the transfer weight proper lower real from the lower and the proper lower real from letter to right. The balas can gate how real from letter to right and the produces the transfer weight and the balast the proper lower real from letter to right. The balast can gate how real from letter to right. The balast can gate the vertice of the most produce the number to be bottom the number of prior on "problem" in balast.

(IOI)

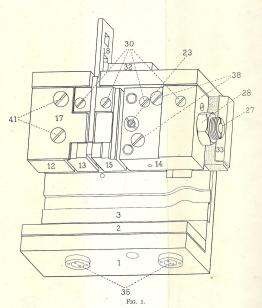
(102)

COMPRESSOR.

The air compressor should be regulatly detaned and the labrication attended to daily. The labricators should be so adjusted that the oil neither runs away so quickly as to ore lubricate nor so shouly as to reader the source of the source of the source of the source be such as to ensure a slight escape of air at the exhaust valve on air fand, where the full plant of keyboards and casters are all working. Periodically it should be tested or you find the sequence of the source of the source when starting, the valves should be cleaned, as dirt bereturn to the cylinders and the pistons recode, as the source return to the cylinders and the pistons recode. These may key provided.

AIR TANK.

This requires daily attention. See that no water is allowed to accumulate in the tank, but blow it off two or three times per day by the cock provided. Note frequently through the day that the water in the outside tank is not warm ; if so, allow more cold water to circulate through. Carelessness on this point may do much damage to the keyboards, as, unless the moisture is extracted from the air by being condensed in the tanktubing (and thence blown out), it will be precipitated in the cold interior of the keyboards, and the resultant rust will not only clog the movement of the parts rusted but the dry rust flaking will be blown through the air channels to such an extent that the keyboard will sooner or later become unworkable. The pressure should be maintained at 14 lbs. or 15 lbs., and the exhaust valve and its seating occasionally cleaned to prevent the valve sticking down. The pipes leading from the air tank to the keyboards should not be too small, or the speed of the air in passing through them will be impeded. For three keyboards a pipe of #" inside diameter will be sufficient : for more than three keyboards I" inside diameter is recommended.


An air tank very close to the compressor will require a greater circulation of water than when the two are further apart.

LIST OF ILLUSTRATIONS.


				Р.	LGE
Starting and Driving Mechanism			10		11
View of Type Carrier and Cam Lever .					15
Different positions of Type Carrier					16
View of Type Carrier-part of					17
Pump Driving Mechanism			-		19
Pump Connections, etc		4			20
Pump Latch and Operating Lever-engaged					21
, , , disengage	d				21
View of Pump Trip Collar and Galley Trip I	Bar				22
Pump Body, Melting Pot, etc	-				23
Plunger and Pump Body					24
Pump Links, etc., showing Plunger in Conne-	ting	Link			25
Action of Pump Lever and Operating Rod L	ever	4			26
Pump Operating Mechanism				-	28
Bearings for Piston Lever					30
Character Wedge in Operation					31
Character Transfer Wedge in Casting Position	1.			ς.	32
Position of Wedges when Casting a Space					33
Space Transfer Wedge in Operation					34
Character Transfer Wedge in Operation .					34
Type Transfer Wedge in Casting Position				÷	35
Space , , , , , , ,					36
Action of Transfer Wedge Shifter					37
Micrometer Abutment Wedge					38
Transfer Wedge Spring Box (assembled) .	5				39
Normal Wedge Locking Pin					41
Cams, Cam Lever and Spring Box for Movir	ig Ja	w Tor	igs Be	ell	
Crank					42
Front Pin Tongs (B) Positioning Stop Rack					43
,, ,, ,, ,, open					44
" Matrix Tongs (n) Positioning Die-case				-	44
Spring Box for Jaw Tong Bell Cranks .					45
Section of Fore Part of Spring Box .					47
Locking Bars and Bell Cranks (assembled)					49
an-	other	posit	ion		50

106)	

Centring Pin Cam Lever and Cams, etc		-	50
Position of Locking Bar Bell Crank Latches when forward :	agai	nst	
bevel on plate	•		51
Mould Blade Cams, Cam Lever and Connecting Rod			52
Mould Blade Ejector Rod and Bell Crank (assembled)	•	*	53
Section of Sizing Spring End of Mould Blade Ejector Rod		-	53
Type Pusher Cams, Cam Lever and Connecting Rod			54
Type Pusher and Bell Crank (assembled)		-	55
Paper Tower Operating Rod and Bell Crank (assembled)			56
Air Clamping Lever Connecting Rod (assembled) .			57
Section of Air Bar and Valve Body (assembled) .			58
Paper Feed Spring Box and Pawls (assembled) .			59
Spool Winding Ratchet, Pawl and Spring (assembled)			60
Spring Box, Escapement, Pawls and Stops (assembled)			60
Winding Spool, Disc and Plunger Button (assembled)			61
Centring Pin Cam, Cam Lever, and Cams		-5	62
Die Case in Sliding Frame, etc.			63
Section of Centring Pin Bushing and Centring Pin (assen	able	d).	64
Carrying Frame, Bridge, etc. (assembled)			65
Justification Wedge Mechanism			68
Justification Wedges-one in action			70
Galley Trip Rod and Pump Trip Mechanism			71
Rock Lever on Galley Trip Rod in different positions		1	72
Hand Trip for Pump			73
Operating Lever Latch			75
Line Hooks and Stop Slide-two positions			76
Line Hooks and Stop			
Section of Galley Cam Shaft, etc. (assembled).			77
Galley Cam Starting and Stopping Mechanism .			78
Line Hook Carriage Mechanism	-		79
Galley Line Rule (or Gate) Mechanism			80
Column Pusher Mechanism	•		So
Plan of Column Pusher Mechanism		•	81
Section through Column Pusher Spring Box			82
Longitudinal and Cross Sections of Mould	-		94
Perspective View of Top of Mould from front. to fac	æ p	age	94
n n n n n hack. n			.94
Cross-Slide "	,		94
Mould dis-assembled with parts in position			95

Perspective View of Top of Mould from Front.

NOZZLES AND DRILLS

A few years ago we printed (in Technica) Biuliton No. 51) a table of pump nozele cleaning chill data which we understand has proved useful over the years. We have now brought this table up to date and present it on this page. May we now repeat the cautionary note, given in *Biulienin No.* 51, for the benefit of younger reades and older ones who may not have saved that number?

When cleaning nozzles having two-stage bores, the drill for the lower, largerdiameter hole, if allowed to penetrate, a too far, will break through the tip of the nozzle. Therefore always be sure that the measurement between the tip of the drill and the depth stop is exactly that given in the right-hand column of the table.

Nozzle no.	Comp. caster symbol	Super caster symbol	Lower hole drill dia. ins.	Upper how. drill dia. ins.	Lower hole length ins.	Lower hole length mm	Dia. ins.	Dia.mm	Comp. caster	Super carter
1	14H	12SH	.120	.062	2-3	55.56	.029	.73	4CT6	16ST8
2	a14H2	12SH1	.120	.120	-	-				1
3		12SH6	.152	.062	24	52.78	.062	1.75	4CT3	16ST1
4	-	12SH2	.213	.213	-	-		1.00		
5	- '	12SH3	.302	213	24	53.97	.082	2.08	_	16579
6	02-0	12SH4	.120	.120	-	-			201	
7		12SH7	.120	.120	-	- 6	3- 093	2.36	a4CT2	16ST11
8		12SH5	.120	.120	-	-	30-		1.1	
9	14H7	12SH14	.120	.029	24	58.74	15577120	3.05	b4CT2	16ST10
10	-	12SH11	.180	.062	244	57.55		235	diana *	100
11	-	12SH13	.152	.082	24	52.78	.152	3.86	-	16ST5
12	b14H	b12SH	.120	.062	212	55.56				13,238
13	c14H2	a12SH1	.120	120			180	4.75		16516
14	at4H4		.120	062	224	52.78				
15	14H32		.120	.062			.213	5.40	-	16ST4
16	c14H	c12SH	.093	.062	2%	55.56				
17	d14H	d12SH	.093	.062	21	55.56	.302	7.67	-	16ST7
23	a14H7	a12SH14	.120	.029	25	58.74				
						10000				

Pump nozzles and drill data

Symbols for ordering drills